001     1038133
005     20250414120441.0
024 7 _ |a 10.1002/adfm.202418059
|2 doi
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01180
|2 datacite_doi
024 7 _ |a WOS:001362709400001
|2 WOS
037 _ _ |a FZJ-2025-01180
082 _ _ |a 530
100 1 _ |a Cui, Jinchao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Advances in In Situ TEM for Dynamic Studies of Carbon‐Based Anodes in Alkali Metal‐Ion Batteries
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1744203562_21581
|2 PUB:(DE-HGF)
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-energy-density anode materials are crucial for achieving high performance alkali metal-ion batteries (AMIBs). In situ transmission electron microscopy (TEM) enables real-time observation of microstructural changes in electrode materials and interfaces during charging/discharging, crucial for designing high-performance anodes. This paper highlights and reviews the dynamic studies of the relationship between the structure and the electrochemical performance of carbon-based composite materials used as anodes in AMIBs by in situ TEM. First, the in situ TEM technique and cell construction method are introduced, followed by an overview of in situ TEM integrates with other advanced measurement techniques. Second, the fundamental working principles of various AMIBs and the energy storage mechanisms of anode materials are explained, along with the achievable functions of in situ TEM in AMIBs. Third, from different carbon matrix structures, including carbon-supported, carbon-embedded, carbon-coated, carbon-encapsulated, and hybrid carbon-composite structures, in situ dynamic studies on the electrochemical behaviors of these carbon-based anode materials by TEM are covered in depth. Finally, a summary of the design ideas and the technical application of in situ TEM for carbon-based anode composites is provided, followed by a suggestion for current challenges and future research paths.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 1
700 1 _ |a Jing, Jingyi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Ya
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Du, Gaohui
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yang, Yongzhen
|0 0000-0003-0566-4802
|b 5
|e Corresponding author
700 1 _ |a Yan, Lingpeng
|0 0000-0003-1177-8558
|b 6
|e Corresponding author
700 1 _ |a Su, Qingmei
|0 0000-0003-0185-4422
|b 7
|e Corresponding author
773 _ _ |a 10.1002/adfm.202418059
|g p. 2418059
|0 PERI:(DE-600)2039420-2
|n 13
|p 2418059
|t Advanced functional materials
|v 35
|y 2025
|x 1616-301X
856 4 _ |u https://juser.fz-juelich.de/record/1038133/files/Adv%20Funct%20Materials%20-%202024%20-%20Cui%20-%20Advances%20in%20In%20Situ%20TEM%20for%20Dynamic%20Studies%20of%20Carbon%E2%80%90Based%20Anodes%20in%20Alkali%20Metal%E2%80%90Ion.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1038133/files/Advances%20in%20In%20Situ%20TEM%20for%20Dynamic%20Study%20of%20Carbon-Based%20Anodes%20in%20Alkali%20Metal%20Ion%20Batteries.docx
909 C O |o oai:juser.fz-juelich.de:1038133
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194716
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2022
|d 2024-12-16
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a review
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21