001038134 001__ 1038134
001038134 005__ 20250203124523.0
001038134 0247_ $$2doi$$a10.1002/admt.202400150
001038134 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01181
001038134 0247_ $$2WOS$$aWOS:001230913900001
001038134 037__ $$aFZJ-2025-01181
001038134 082__ $$a600
001038134 1001_ $$00000-0001-9395-4871$$aBalitskii, Olexiy$$b0
001038134 245__ $$aRecent Developments in Halide Perovskite Nanocrystals for Indirect X‐ray Detection
001038134 260__ $$aWeinheim$$bWiley$$c2024
001038134 3367_ $$2DataCite$$aOutput Types/Book Review
001038134 3367_ $$0PUB:(DE-HGF)36$$2PUB:(DE-HGF)$$aReview$$breview$$mreview$$s1738063368_6607
001038134 3367_ $$2ORCID$$aBOOK_REVIEW
001038134 3367_ $$2DRIVER$$areview
001038134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
001038134 3367_ $$2BibTeX$$aARTICLE
001038134 3367_ $$00$$2EndNote$$aJournal Article
001038134 520__ $$aMetal halide perovskites are revolutionizing X-ray detection through a combination of low cost, solution processing, favorable optoelectronic properties, and high stopping power for high-energy ionizing radiation. While perovskite single crystals and polycrystalline wafers are considered direct X-ray converters, most medical X-ray applications are based on scintillators that shift high-energy radiation into the visible. Several materials are on the market, but demonstrations based on CsPbBr3 nanocrystals, possibly embedded in a matrix material or combined with organic molecules as luminescent species, highlight their competitiveness with established scintillators in terms of radioluminescence yield and transient behavior. Major hurdles that perovskite nanocrystal scintillators must overcome are environmental stability and toxicity. While there are still few examples of high-performance lead-free perovskite nanocrystal scintillators, microcrystalline perovskites are emerging with promising properties, reduced toxicity, and significant Stokes shifts to avoid reabsorption of emission in thick films. Thus, the near future of perovskite nanocrystal scintillator materials will primarily be the adoption of recipes for materials with proven properties in microcrystalline form. The nanocrystal colloidal solutions will facilitate the large-scale printing of homogeneous and scattering-free films to obtain high contrast and spatial resolution X-ray images by scintillation
001038134 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001038134 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x1
001038134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038134 7001_ $$0P:(DE-Juel1)188797$$aSytnyk, Mykhailo$$b1$$ufzj
001038134 7001_ $$00000-0003-0430-9550$$aHeiss, Wolfgang$$b2$$eCorresponding author
001038134 773__ $$0PERI:(DE-600)2850995-X$$a10.1002/admt.202400150$$gVol. 9, no. 20, p. 2400150$$n20$$p2400150$$tAdvanced Materials Technologies$$v9$$x2365-709X$$y2024
001038134 8564_ $$uhttps://juser.fz-juelich.de/record/1038134/files/Adv%20Materials%20Technologies%20-%202024%20-%20Balitskii%20-%20Recent%20Developments%20in%20Halide%20Perovskite%20Nanocrystals%20for%20Indirect%20X%E2%80%90ray.pdf$$yOpenAccess
001038134 909CO $$ooai:juser.fz-juelich.de:1038134$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188797$$aForschungszentrum Jülich$$b1$$kFZJ
001038134 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001038134 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
001038134 9141_ $$y2024
001038134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001038134 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001038134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER TECHNOL-US : 2022$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER TECHNOL-US : 2022$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-16$$wger
001038134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001038134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001038134 920__ $$lyes
001038134 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001038134 980__ $$areview
001038134 980__ $$aVDB
001038134 980__ $$aUNRESTRICTED
001038134 980__ $$ajournal
001038134 980__ $$aI:(DE-Juel1)IET-2-20140314
001038134 9801_ $$aFullTexts