001038137 001__ 1038137
001038137 005__ 20250203124506.0
001038137 0247_ $$2doi$$a10.1039/D4EE01432D
001038137 0247_ $$2ISSN$$a1754-5692
001038137 0247_ $$2ISSN$$a1754-5706
001038137 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01184
001038137 0247_ $$2WOS$$aWOS:001260870800001
001038137 037__ $$aFZJ-2025-01184
001038137 082__ $$a690
001038137 1001_ $$0P:(DE-Juel1)194716$$aZhang, Jiyun$$b0$$eCorresponding author$$ufzj
001038137 245__ $$aPrecise control of process parameters for >23% efficiency perovskite solar cells in ambient air using an automated device acceleration platform
001038137 260__ $$aCambridge$$bRSC Publ.$$c2024
001038137 3367_ $$2DRIVER$$aarticle
001038137 3367_ $$2DataCite$$aOutput Types/Journal article
001038137 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738133131_6363
001038137 3367_ $$2BibTeX$$aARTICLE
001038137 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038137 3367_ $$00$$2EndNote$$aJournal Article
001038137 520__ $$aAchieving high-performance perovskite photovoltaics, especially in ambient air, is critically dependent on the precise optimization of process parameters. However, traditional manual methods often struggle to effectively control the key variables. This inherent challenge requires a paradigm shift toward automated platforms capable of precise and reproducible experiments. Herein, we use a fully automated device acceleration platform (DAP) to optimize air-processed parameters for preparing perovskite devices using a two-step sequential deposition technique. Over ten process parameters with significant potential to influence device performance are systematically optimized. Specifically, we delve into the impact of the dripping speed of organic ammonium halide, a parameter that is difficult to control manually, on both perovskite film and device performance. Through the targeted design of experiments, we reveal that the dripping speed significantly affects device performance primarily by adjusting the residual PbI2 content in the films. We find that optimal dripping speeds, such as 50 µL s−1, contribute to top-performance devices. Conversely, excessively fast or slow speeds result in devices with comparatively poorer performance and lower reproducibility. The optimized parameter set enables us to establish a standard operation procedure (SOP) for additive-free perovskite processing in ambient conditions, which yield devices with efficiencies surpassing 23%, satisfactory reproducibility, and state-of-the-art photo-thermal stability. This research underscores the importance of understanding the causality of process parameters in enhancing perovskite photovoltaic performance. Furthermore, our study highlights the pivotal role of automated platforms in discovering innovative workflows and accelerating the development of high-performing perovskite photovoltaic technologies.
001038137 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001038137 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038137 7001_ $$0P:(DE-Juel1)192542$$aWu, Jianchang$$b1$$ufzj
001038137 7001_ $$aBarabash, Anastasia$$b2
001038137 7001_ $$0P:(DE-Juel1)200304$$aDU, Tian$$b3$$ufzj
001038137 7001_ $$00000-0002-3005-5788$$aQiu, Shudi$$b4
001038137 7001_ $$0P:(DE-Juel1)201923$$aLe Corre, Vincent Marc$$b5$$ufzj
001038137 7001_ $$aZhao, Yicheng$$b6
001038137 7001_ $$00000-0003-3468-3543$$aZhang, Kaicheng$$b7
001038137 7001_ $$0P:(DE-Juel1)194317$$aSchmitt, Frederik$$b8
001038137 7001_ $$00000-0003-3678-6538$$aPeng, Zijian$$b9
001038137 7001_ $$aTian, Jingjing$$b10
001038137 7001_ $$00000-0002-8399-4244$$aLi, Chaohui$$b11
001038137 7001_ $$0P:(DE-Juel1)201377$$aLiu, Chao$$b12$$ufzj
001038137 7001_ $$00000-0002-6974-410X$$aHeumueller, Thomas$$b13
001038137 7001_ $$aLüer, Larry$$b14
001038137 7001_ $$0P:(DE-Juel1)177626$$aHauch, Jens$$b15$$ufzj
001038137 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph$$b16$$eCorresponding author$$ufzj
001038137 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/D4EE01432D$$gVol. 17, no. 15, p. 5490 - 5499$$n15$$p5490 - 5499$$tEnergy & environmental science$$v17$$x1754-5692$$y2024
001038137 8564_ $$uhttps://juser.fz-juelich.de/record/1038137/files/d4ee01432d.pdf$$yOpenAccess
001038137 909CO $$ooai:juser.fz-juelich.de:1038137$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194716$$aForschungszentrum Jülich$$b0$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192542$$aForschungszentrum Jülich$$b1$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200304$$aForschungszentrum Jülich$$b3$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201923$$aForschungszentrum Jülich$$b5$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194317$$aForschungszentrum Jülich$$b8$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201377$$aForschungszentrum Jülich$$b12$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-6974-410X$$aForschungszentrum Jülich$$b13$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177626$$aForschungszentrum Jülich$$b15$$kFZJ
001038137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b16$$kFZJ
001038137 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001038137 9141_ $$y2024
001038137 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001038137 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038137 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-28$$wger
001038137 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001038137 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001038137 920__ $$lyes
001038137 9201_ $$0I:(DE-Juel1)IET-2-20140314$$kIET-2$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
001038137 980__ $$ajournal
001038137 980__ $$aVDB
001038137 980__ $$aUNRESTRICTED
001038137 980__ $$aI:(DE-Juel1)IET-2-20140314
001038137 9801_ $$aFullTexts