001     1038137
005     20250203124506.0
024 7 _ |a 10.1039/D4EE01432D
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-01184
|2 datacite_doi
024 7 _ |a WOS:001260870800001
|2 WOS
037 _ _ |a FZJ-2025-01184
082 _ _ |a 690
100 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Precise control of process parameters for >23% efficiency perovskite solar cells in ambient air using an automated device acceleration platform
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738133131_6363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Achieving high-performance perovskite photovoltaics, especially in ambient air, is critically dependent on the precise optimization of process parameters. However, traditional manual methods often struggle to effectively control the key variables. This inherent challenge requires a paradigm shift toward automated platforms capable of precise and reproducible experiments. Herein, we use a fully automated device acceleration platform (DAP) to optimize air-processed parameters for preparing perovskite devices using a two-step sequential deposition technique. Over ten process parameters with significant potential to influence device performance are systematically optimized. Specifically, we delve into the impact of the dripping speed of organic ammonium halide, a parameter that is difficult to control manually, on both perovskite film and device performance. Through the targeted design of experiments, we reveal that the dripping speed significantly affects device performance primarily by adjusting the residual PbI2 content in the films. We find that optimal dripping speeds, such as 50 µL s−1, contribute to top-performance devices. Conversely, excessively fast or slow speeds result in devices with comparatively poorer performance and lower reproducibility. The optimized parameter set enables us to establish a standard operation procedure (SOP) for additive-free perovskite processing in ambient conditions, which yield devices with efficiencies surpassing 23%, satisfactory reproducibility, and state-of-the-art photo-thermal stability. This research underscores the importance of understanding the causality of process parameters in enhancing perovskite photovoltaic performance. Furthermore, our study highlights the pivotal role of automated platforms in discovering innovative workflows and accelerating the development of high-performing perovskite photovoltaic technologies.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 1
|u fzj
700 1 _ |a Barabash, Anastasia
|b 2
700 1 _ |a DU, Tian
|0 P:(DE-Juel1)200304
|b 3
|u fzj
700 1 _ |a Qiu, Shudi
|0 0000-0002-3005-5788
|b 4
700 1 _ |a Le Corre, Vincent Marc
|0 P:(DE-Juel1)201923
|b 5
|u fzj
700 1 _ |a Zhao, Yicheng
|b 6
700 1 _ |a Zhang, Kaicheng
|0 0000-0003-3468-3543
|b 7
700 1 _ |a Schmitt, Frederik
|0 P:(DE-Juel1)194317
|b 8
700 1 _ |a Peng, Zijian
|0 0000-0003-3678-6538
|b 9
700 1 _ |a Tian, Jingjing
|b 10
700 1 _ |a Li, Chaohui
|0 0000-0002-8399-4244
|b 11
700 1 _ |a Liu, Chao
|0 P:(DE-Juel1)201377
|b 12
|u fzj
700 1 _ |a Heumueller, Thomas
|0 0000-0002-6974-410X
|b 13
700 1 _ |a Lüer, Larry
|b 14
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 15
|u fzj
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 16
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D4EE01432D
|g Vol. 17, no. 15, p. 5490 - 5499
|0 PERI:(DE-600)2439879-2
|n 15
|p 5490 - 5499
|t Energy & environmental science
|v 17
|y 2024
|x 1754-5692
856 4 _ |u https://juser.fz-juelich.de/record/1038137/files/d4ee01432d.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1038137
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)200304
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)201923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)194317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)201377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 0000-0002-6974-410X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21