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Alexander Mitsos,3,4,5 and André Bardow1,7,*
SUMMARY

The energy transition is a multinational challenge to mitigate climate change, with a joint reduction target
for greenhouse gas emissions. Simultaneously, each country is interested in minimizing its own energy
supply cost. Still, most energy system models neglect national interests when identifying cost-optimal
transition pathways. We design the European energy system transition until 2050, considering competi-
tion between countries in a shared electricity and carbon market using bilevel optimization. We find that
national objectives substantially impact the transition pathway: Compared to the model solved using the
common centralized optimization, the overall installed capacity increases by just 3% when including na-
tional interests. However, the distribution of the installed capacity changes dramatically by more than
40% in most countries. Our results underline the risk of miscalculating the need for national capacity
expansion when neglecting stakeholder representation in energy system models and demonstrate the
need for cooperation for an efficient energy transition.

INTRODUCTION

The European Green Deal1 calls for a major multinational transition of the European economy in all sectors – a transition that relies on the

secure, clean, and affordable supply of energy. In parallel to the common goal of reducing Europe’s overall greenhouse gas (GHG) emissions

in the interconnected electricity sector, all countries follow their own – partially competing – strategies to grant secure, clean, and affordable

electricity to their electorate. The transition of the European energy system till 2050, therefore, needs to fulfill three requirements.

(1) meet the environmental goals set by policymakers,

(2) result in a cost-efficient system to maximize overall welfare, and

(3) account for the self-interest of sovereign countries to organize their own energy system.

To support policymakers in designing the energy transition,2 energy systemmodels for long-term capacity expansion planning are essen-

tial. Still, in a review of energy systemmodels and their contributions to answering policy questions,2 we find that only 5 of 40 reviewed energy

system models explicitly address competition between actors. Hence, stakeholder behavior is commonly neglected, as most energy system

models apply a central planner approach.

In reality, however, there is no central planner for the European energy system, and individual stakeholders act based on their own, some-

times conflicting, interests. Hofbauer et al. emphasize the importance of incorporatingmultiple governance scales into energy systemmodels

to provide meaningful decision support and facilitate coordination of actors across government scales.3 Nevertheless, multilevel governance

and decision-making in the energy transition are often neglected in energy system models,3 resulting in unrealistic player behavior, an un-

derestimation of overall costs,4 or failure to meet environmental targets.5

The European energy transition is an example of multilevel governance in energy systems: On the national level, the individual countries

aim to ensure an affordable energy supply via capacity expansion and electricity trade.Meanwhile, at the European level, joint GHGemissions

reduction targets are set while a market clearing mechanism minimizes the cost of the overall electricity supply. As a result, interests on the

national and European levels can be misaligned, which cannot be accurately reflected by a central planner approach.
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The misalignment of interests results in non-cooperative behavior that can be modeled by game theoretical approaches. Hierarchical re-

lationships with a leader making decisions before a follower are called Stackelberg games6 that are considered a modeling approach in en-

ergy systemmodels (e.g., 7–9). When the leader has complete knowledge of the followers’ behavior, the Stackelberg game can be formulated

as bilevel optimization problems. In general, a bilevel optimization problem contains an upper-level problem describing the leader’s deci-

sions and a lower-level problem describing the followers’ decisions.10 As such, bilevel optimization can model decision-making on two levels

and support market-based capacity expansion planning by considering the objectives of individual countries and the common markets on

different hierarchical levels. Bilevel optimization is an establishedmethod for electricity system andmarket analysis, with applications ranging

from market bidding and electricity system expansion to the optimal expansion and operation of electricity storage for arbitrage.11–13 The

formulation of bilevel optimization problems is flexible and depends on the analysis at hand. Multi-leader-single-follower structures are

well suited to represent capacity expansion with participants interacting in a shared liberalized market. In such multi-leader-single-follower

games, the investment decisions of individual players are modeled on the upper level, and the common electricity market is modeled on the

lower level.11

Most applications of bilevel optimization to capacity expansion problems of electricity and energy systems (Table 1) investigate oligop-

olistic markets, i.e., markets dominated by few participants. The objective function of participants on the upper level is typically cost minimi-

zation, and the objective function of the market on the lower level is typically to maximize social welfare by minimizing operational costs.

While bilevel optimization is well suited to reflect multilevel governance, it entails a complex mathematical formulation and requires so-

phisticated solution methods tailored to the bilevel problem type. For example, some of the authors developed the first rigorous algorithms

for nonlinear bilevel problems with a nonconvex lower level19 and mixed-integer nonlinear bilevel problems.20 In energy systems modeling

using bilevel optimization, both upper- and lower-level problems are typically formulated as linear problems.16 Bilevel optimization problems

with linear (or more generally convex) lower-level problems can be reformulated to an equivalent single-level nonlinear optimization problem

and solved using commercial solvers. Still, the high computational effort has limited the size and complexity of bilevel optimization problems.

For instance, of the studies reviewed in Table 1, only two consider energy storage despite the value of storage in energy systems with high

penetration of renewables. The two studies including storage are limited to two players.9,16 Detailed models of electricity storage have been

included in bilevel optimization problems,12,13 with a limited focus on the placement of the batteries or their bidding strategies to enable

arbitrage. The present study neglects energy storage to reduce computational time, although introducing storage constraints in our model

is straightforward.Overall, bilevel optimization of the capacity expansion in energy systems is typically limited to stylized systems,7,14,16,18,21 or

small-scale case studies4,17 with no more than 5 players.16

Still, studies using bilevel optimization demonstrate the potential impacts of misaligned interests on the overall welfare. For example,

Panos et al. observe a decrease in social welfare by 10% in a capacity expansion problem with a common electricity market. However, their

study is limited to two timesteps, a single fixed carbon price, and five countries exertingmarket power.4 Bilevel optimization can also be used

to model carbon emission regulations: He et al. compare a cap-and-trade system to a taxation system.8 For taxation, bilevel optimization is

used tomodel the selection of tax rates on the upper level, while the generation companies’ investment and operation decisions and the grid

owner’s operation decisions are determined on the lower level. Martelli et al. develop a bilevel formulation where the upper level sets the tax

rate for a district energy system minimizing investment and operation costs.9 Rocha et al. model a cap-and-trade system with 4 players opti-

mizing their capacity expansion under a cap-and-trade program in a 9-node network model of Northern Illinois, where players must choose

between predefined capacity expansion plans.17
CASE STUDY

This study assesses the impact of decentral planning and market representation in energy system models. In our assessment, we focus

on electricity, a sector within the energy system, for simplicity. However, the methodology can be applied to a broader scope consid-

ering sector-coupled energy systems. We assess the impact by comparing the investment strategies derived from the decentralized and

centralized modeling approach in a real-life case study. To ensure comparability between the results, we assume the same parameters

in both models for availabilities, transmission capacities, prices of fossil fuel imports, and the investment and operating costs of power

plants.

In particular, our case study assesses the impact of market representation in the European energy transition toward net-zero operational

emissions by 2050. In the transition, we focus on pan-European decarbonization and thus neglect national decarbonization targets.

Importantly, themodeling approaches differ in their consideration of carbon allowance and congestion costs: The centralizedmodel limits

GHG emissions globally via a constraint on the total emissions from all countries, eliminating the need for a carbon price. Further, the ex-

change of electricity is governed by electricity balances, neglecting explicit electricity prices. Thus, the centralized model neglects explicit

carbon costs and congestion costs. However, in the decentralized model, the individual countries follow their individual objectives on the

upper level. Here, the global emission and energy balance constraints cannot be incorporated directly. Instead, the decentralized model in-

troduces markets between countries on the lower level of the bilevel problem. On the lower level, GHG emission constraints are included to

represent the carbon allowance market, resulting in an endogenous carbon allowance price. Further, electricity balances are added on the

lower level, representing a competitive electricity market to determine the operation of power plants, resulting in endogenous electricity pri-

ces. Grid congestion between countries and their market zones results in differences between locational market clearing prices, allowing for

arbitrage during electricity trading. Thus, grid congestion in the decentralized model leads to congestion costs from electricity imports and

exports.
2 iScience 27, 110168, July 19, 2024



Table 1. Literature overview putting the present study in context – Bilevel optimization in capacity expansion problems of electricity systems

source focus/case study

players/

time steps/

technologies game design UL objective UL variables LL objective LL variables

Kazempour

et al.7
capacity expansion

in an oligopolistic

market

2/7/2 single-leader,

single-follower

maximize the profit

of the producer

considering

investment and

operation under

uncertain rival

behavior

investment

decisions and

price offer

minimize social

welfare costs in

the electricity

market

operation

decisions of

producers

He et al.8 capacity expansion

under a carbon tax

3/3/2 single-leader,

multi-follower

minimize collected

carbon tax by

policymaker

carbon tax rate maximize the

profit of the

producer and

transmissions

company

investment

and operation

decisions of

producers and

transmission of

electricity

Wogrin

et al14;

Wogrin15

capacity expansion

in an oligopolistic

market

2/4/2 multi-leader,

multi-follower

maximize the

profit of the

producer

considering

investment &

operation

investment

decisions

maximize the

profit of

producers

operation

decisions of

producers

Wogrin

et al.16
capacity expansion

in an oligopolistic

market

2/12/3 single-leader,

single-follower

maximize the profit

of players

considering

investment and operation

investment

decisions

minimize social

welfare cost

operation

decision of

the producer

Rocha

et al.17
capacity expansion

under a

cap-and-trade

program

4/2/3 multi-leader,

multi-follower

maximize the profit

by the producer

considering

investments,

operation, and

allowance trade

investment

decisions

minimize social

welfare costs in

the electricity

and carbon

allowance market

operation

decisions of

producers

Panos

et al.4
capacity expansion

in an oligopolistic

market

5/2/14 multi-leader,

multi-follower

maximize the profit

of countries

considering

investment

and operation

investment

decisions

maximize social

welfare

operation

decisions of

producers and

transmission

of electricity

Taheri

et al.18
Trilevel problem:

Transmission (third

level) and capacity

expansion in an

oligopolistic market

(second level)a

2/3/2 single-/

multi-leader,

common

follower

maximize the profit

of the producer

considering

investment and

operation

investment

decisions and

price offer

maximize social

welfare

operation

decisions of

producers and

consumers

Martelli

et al9
capacity expansion

under incentives for

renewables

2/2/10 single-leader,

single-follower

minimize the

cost of incentives/

maximize collected

carbon tax by

policymaker

incentive and

carbon tax rates

minimize

the cost for

producers

investment

and operation

decisions of

producers

this study capacity expansion

in a competitive

market under GHG

emission constraint

21/10/10 multi-leader,

single-follower

minimize cost of

stakeholders

(investment, operation,

congestion, and

carbon allowances)

investment

decisions

minimize social

welfare cost

operation

decision of

producers

The most relevant features of each study are underlined. UL: upper level; LL: lower level.
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Figure 1. Existing electricity generation capacity for each country participating in the European electricity market in 2015
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To establish comparability between the twomodels, we retrospectively evaluate the centralizedmodel’s congestion and carbon allowance

costs as follows: We optimize the operation of the decentralized model for the fixed optimal electricity system design from the centralized

model, thus yielding the market-based congestion and carbon allowance costs for the design of the centralized model.

In this work, we consider transactions on the carbon allowance markets as costs in the objective function of the countries. However, note

that in practice, the transactions resulting from trading on the carbon allowancemarkets are transfers between companies or from companies

to the government.

Our case study comprises 21 countries participating in the European electricity market. For simplicity, we assume that each country in the

European electricity market corresponds to a single stakeholder since countries can specifically target different transition strategies through

policies, and the non-regionally resolved bidding zones typically correspond to single countries. The countries aim to maximize their welfare

by minimizing their individual total annualized cost. Each country is represented in the electricity system models with one node, including

existing electricity generation technologies and capacity expansion limits. Electricity can be transmitted between the nodes via interconnec-

tions of power lines (Figure 1).

Wemodel the European electricity systemusing amulti-leader-single-follower approach, where the 21 countries act as leaders in common

electricity and carbon markets that act as a follower. With 21 players, 10 time steps, and 10 electricity generation technologies, our study sur-

passes typical proof-of-concept bilevel studies.

The interactions among countries with competing interests are modeled in a Nash game (see game-theoretical approach), for which we

heuristically find an equilibrium solution using a Gauss–Seidel algorithm (see solution method). The interactions between each country and

the electricity and carbon market are modeled as a Stackelberg game for which we formulate a bilevel optimization problem with linear up-

per- and lower-level problems.We reformulate the bilevel problem to a single-levelmixed-integer linear programming problem to determine

the investment strategies for the non-cooperative game.
4 iScience 27, 110168, July 19, 2024



Figure 2. Total annualized cost of the European electricity system in the decentralized (left) and centralized (right) models

The centralized model neglects the market models of the decentralized model, from which the congestion and carbon allowance costs emerge. To establish

comparability, we retrospectively evaluate the centralized model’s congestion and carbon allowance costs (hatched): We optimize the operation of the fixed

optimal decentralized model with the electricity system design from the centralized model.
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Wemodel operational GHG emissions according to the life cycle assessment methodology (ISO 1404022 and ISO 1404423) using the data-

base ecoinvent 3.7.1 APOS24 and country-specific life cycle inventories for the electricity generation technologies based on Baumgärtner

et al.25 As a life cycle inventory assessment method, we employ the Environmental Footprints 2.0 database.26 While this study focuses on

climate change, our model can easily investigate additional impact categories.

We aggregate all annual time series with an hourly resolution to 10 typical time steps without temporal coupling. Further information on

the implementation can be found in the method details.
RESULTS

In this section, we compare the European transition pathways resulting from the decentralized and centralized model. Furthermore, we

consider the expansion strategies of individual countries and discuss the impact of non-cooperative behavior on electricity prices.
Electricity system costs

The modeling approaches of the centralized and decentralized models differ fundamentally, in particular in consideration of the costs. For

2050, the investment and operational costs in the decentralized model are 8% greater than in the centralized model. The centralized model

thus underestimates the investment and operating costs for systems that are, in reality, competitive (Figure 2).

In the centralized model, grid congestion costs occur indirectly due to constraints on transmission capacities (Equation 29), resulting in

additional capacity expansion. In the decentralized model, congestion additionally results in costs due to arbitrage. Thus, the centralized

model considers congestion but neglects markets and, therefore, arbitrage costs. For comparison with the decentralized model, we have

determined the congestion costs retrospectively (Figure 2) by evaluating the infrastructure design of the centralized model in the decentral-

ized model. Inserting the centralized model design as fixed in the decentralized model to determine carbon allowance and congestion costs

for the centralizedmodel retrospectively shows that overall costs, including congestion and carbon allowance costs, are higher for the central-

ized electricity system design compared to the decentralized design. In 2050, the total costs of the centralized electricity system design

exceed the costs of the decentral design by 12%, as the decentral design directly considersmarket behavior. Centralized planning thus results

in a design that incurs substantial additional costs when applied to a context with market behavior.
European electricity system designs in 2050

Both the decentralized and the centralized electricity systemdesigns rely heavily on onshore wind andphotovoltaics for electricity generation.

Further, no country relies on a single technology for electricity generation.

The decentralized electricity system design only has a 3% higher overall electricity generation capacity compared to the centralized

design. This increase is negligible and is due to the inclusion of markets in the decentralized model, which encourages some countries to

invest in additional renewable and fossil electricity generation technologies to mitigate high congestion costs. In contrast, the centralized

model minimizes total annualized costs across all countries, neglecting congestion costs and reducing capacity expansion.

This impact of competition on the design and overall cost increases with time as the penetration of renewable electricity generation tech-

nologies rises due to more stringent emission limits. As a result, the transition pathways obtained from decentralized and centralized models

increasingly diverge in later optimization years.

We consider themild increase of the overall capacity in the decentralizedmodel to be negligible, in particular when consideringmodeling

simplifications, such as the lack of storage or ramping constraints. This finding is also not surprising since the overall capacity is mostly deter-

mined by the demand, which is identical in both models. However, the results change substantially within individual countries: In 11 of the 21

countries, the installed capacity changes by overG40% compared to the centralized electricity system design. Furthermore, the dominating
iScience 27, 110168, July 19, 2024 5



Figure 3. Capacities in the year 2050 in the decentralized and the centralized models and for two additional scenarios with high or low renewable

availability

Country abbreviations: France (FR), Italy (IT), Germany (DE), Spain (ES), Netherlands (NL), Poland (PL), Denmark (DK), Greece (GR), Sweden (SE), Austria (AT),

Portugal (PT), Finland (FI), Belgium (BE), Ireland (IE), Bulgaria (BG), Luxembourg (LU), Estonia (EE), Lithuania (LT), Latvia (LV), Croatia (HR), Slovenia (SI)
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electricity generation technology changes in 10 of the 21 countries (Figure 3). Thus, half of the countries end up with a completely different

electricity system.

From the years with available data,27 we identified those with highest (1990) and lowest (2010) average capacity factors of PV, solar thermal,

onshore and offshore wind power plants. Based on the identified years, we calculated the transition pathways for additional scenarios with

high and low availability of renewable electricity generation. The capacity factors of renewable power plants substantially impact the out-

comes of the energy transition, highlighting the need to consider uncertain parameters in the energy system design. However, regarding

the focus of this study, the overall results are robust: Across all considered scenarios, competition greatly impacts the design within individual

countries, withmany trends persisting.Notably, capacity expansion in the three countries with the largest installed capacities follows the same

trend, except for the high renewable scenario, where France relies on nuclear power instead of renewables, which leads to a significant reduc-

tion of the overall capacity by 61%–70% compared to the base scenario for the decentralized and centralized model, respectively. This sig-

nificant capacity reduction is due to the higher full-load hours of nuclear power plants compared to wind and photovoltaic power plants.
Electricity system design of individual countries: Germany

The cost of the decentralized model is 8% greater compared to the centralized model when setting aside congestion and carbon allowance

costs. However, the differences between the decentralized and centralizedmodels can be dramatic for individual countries, such as Germany.

As Europe’s largest electricity consumer and interconnected with 9 neighboring countries in central Europe, Germany is discussed in detail in

the following.

By 2050, the overall electricity generation capacity in the decentralized electricity system design exceeds the capacity in the centralized

design by 49% in Germany (Figure 4). The difference is largely due to a greater capacity expansion of photovoltaics, resulting in other coun-

tries reducing their capacity expansion: The capacity of countries neighboringGermany is reduced in total by�13% in 2050, with Luxembourg

(�76%), Austria (�60%), Denmark (�43%), and theNetherlands (�26%) seeing the largest reductions, primarily in photovoltaics. France, which

has the largest total electricity generation capacity in the centralized electricity system design, sees a 20% reduction in the decentralized

design, primarily in onshore wind and photovoltaic capacity. Thus, electricity generation capacity is moved to Germany despite the greater

availability of renewables in neighboring countries: In France and the five countries with the largest relative reduction of installed capacity, the

full load hours of photovoltaic power plants are 4%–31% greater than in Germany.

Increasing installed capacity in Germany in the decentralized design lowers congestion costs, as grid congestion and associated high elec-

tricity prices are reduced. In the decentralized model, reliance on countries with high availability of renewable electricity generation
Figure 4. Capacity expansion of the German electricity system up to 2050 in the decentralized (left) and centralized (right) models

6 iScience 27, 110168, July 19, 2024



Figure 5. Average locational market clearing prices in decentralized (left) and centralized (right) models over the transition path

The blue dashed and red dotted lines indicate the average market-clearing price for all countries in the decentralized and centralized models, respectively. Gray

solid lines indicate the average locational market clearing prices in individual countries.
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technologies results in high electricity and congestion costs from the perspective of the importing country due to high grid occupancy and

arbitrage. Importing countries, such as Germany, are thus incentivized to expand domestic renewable capacities to reduce reliance on other

countries in the decentralized model.

However, from a European perspective, capacity expansion in countries with low availability of renewable resources increases overall gen-

eration cost and is therefore avoided in the centralized model.
Electricity prices

Fixing the centralized model design in the decentralized model to determine the locational market clearing prices for each country in the

centralized model, we find that the average prices increase over time in both centralized and decentralized models (Figure 5). However,

the average locational market clearing price is 40% lower in the decentralized model compared to the centralized model.

The locational market clearing prices differ between countries due to limited transmission capacities. The spread of prices in individual

countries is much lower in the decentralized model, where the standard deviation of the prices increases from 3.1 EUR/MWh to 14 EUR/

MWh from 2015 to 2050 (Figure 5). The spread is lower in the decentralized model, where individual countries expand their capacity, mini-

mizing congestion costs as part of their objective function. High electricity prices thus incentivize additional capacity expansion. In the central-

ized model, the standard deviation increases from 7.7 EUR/MWh to 56 EUR/MWh in the same period and is 4 times higher in 2050. Here, the

objective function neglects electricity prices during design optimization (see case study).

Thus, in the centralized model, the retrospective evaluated electricity prices reach extremely high average values in a few countries in

2035–2045, exceeding 150 EUR/MWh (Figure 5). The prices can be attributed to the lower capacity expansion in the centralized design, re-

sulting in more frequent grid congestion.

In conclusion, the decentralized model results in lower locational market clearing prices with a lower spread, in particular as the share of

renewables increases with tighter emission limits toward the end of the transition horizon.

Similarly, the carbon allowance price of the decentralized model is almost 16 times lower than the carbon allowance price evaluated retro-

spectively for the centralized model in the period from 2015 to 2040. However, in 2045–2050, the carbon allowance prices converge in both

models to the penalty price for exceeding the GHG emission limit, as the electricity system is unable to compensate residual emissions (see

method details).
DISCUSSION

The present publication introduces amodel formulation for capturing the effects of decentral decision-making andmarket behavior in energy

system models and further introduces a solution approach for the problem.

While the solution approach cannot guarantee convergence to a Nash equilibrium, the approach converges reliably in practice when

applied to our problem. Furthermore, the solution to the decentralized optimization problemmay not be unique: Several designs of the Eu-

ropean electricity system may lead to a Nash equilibrium, which is a common issue in similar problems.11,28 In our case, we observe no sub-

stantial changes in the solution obtained when altering the order of players in the fixed-point iteration.

Our study highlights the importance of representing market behavior in electricity and by extension energy system analysis. However, we

still simplify the real-world electricity market design. While major strategic decisions for energy systems are made at the country scale, the

actual actors in the market are not countries themselves. Future studies should investigate the effects of competing players within countries

on transition pathways. Adding industry stakeholders into energy systemmodels would increase complexity but could result in further market

effects that a centralized model cannot capture.

We assume that the trends we have identified in our work will strengthen significantly if the electrification of further sectors through sector

coupling is considered, as the trading volume for electricity will then increase.
iScience 27, 110168, July 19, 2024 7
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Limitations of the study

The use of bilevel optimization in ourmodeling formulation to capturemarket behavior substantially increasesmodel complexity. As a conse-

quence, we simplify other aspects of the energy system model to maintain computational tractability. In our case study, simplifications are

made consistently in both the centralized and decentralized models to maintain comparability of results:

In this publication, the energy system is limited to the electricity sector, although the modeling approach conceptually allows to model

sector-coupling. Furthermore, time coupling is neglected to reduce problem size, prohibiting electricity storage. Additionally, we resolve

the system at the country level, meaning that potential limitations of electricity transmission within the countries are neglected. However,

theoptimal designof renewable energy systems is impactedby thedegreeofmodelingdetail, e.g., by the spatiotemporal resolution, the avail-

ability of time-coupling, sector-coupling, and technical details, such as ramp constraints or start-up costs. Furthermore, energy systemdesigns

are sensitive to technical input parameters, such as discount rates, renewable technology availabilities andpotentials, or technology costs.29–31

Our study considers only a fewdeterministic scenarios, neglecting the stochastic nature of long-term energy systemplanning. Therefore, while

our study demonstrates the impact of market effects and misaligned interests on system design, future work should consider the sensitivity of

the system design to the degree of modeling detail and the technical input parameters to supply insights to real-world systems.

Partial equilibriummodels of the global energy sector exist that combine detailed bottom-up modeling with market representation, e.g.,

the TIMES32 model that can identify multiregional global equilibria. In particular, TIMES combines the central planner paradigm through a

total net surplus maximization with a market representation that considers the price elasticity of demands and trade of energy commodities

between regions. The single-level formulation enables higher modeling detail, including a market representation, but holds on to the central

planner assumption.

In summary, models need to be tailored to the specific research question being studied, considering the trade-off between modeling

stakeholder representation and other aspects of the energy system.

SUMMARY

During capacity expansion planning of energy systems, current models often neglect competing interests that arise from decentralized de-

cision-making. To address this issue, we propose a bilevel formulation of the capacity expansion problem that considers competing interests

in markets. We further present a solution algorithm to determine a Nash equilibrium and show that reflecting market behavior changes the

transition pathways of individual countries substantially.

Our case study considers the transition of the electricity system of 21 countries participating in the European electricity market and dem-

onstrates that a centralizedmodel can underestimate costs: The annualized investment and operating costs in 2050 are 8% lower compared to

the decentralized model when ignoring congestion and carbon allowance costs.

Furthermore, the installed capacity of individual countries differs substantially between centralized and decentralized models: Our results

show that the installed generation capacity in a majority of countries changes by more thanG40% when market behavior is represented via

bilevel optimization. The results highlight the importance of considering market behavior as it considerably affects the need for capacity

expansion in individual countries.

For Germany, the largest electricity consumer in the electricity system model, the installed capacity is 49% higher in 2050 when market

behavior is reflected. In addition, the technology mix differs substantially between centralized and decentralized electricity system designs

for many countries.

Finally, the decentralizedmodel identifies a systemwhere the averagemarket clearing prices are 40% lower than in the centralizedmodel.

The spread of country-specific locational market clearing prices is also lower in the decentralized model.

In conclusion, our study emphasizes the importance of consideringmarket behavior in energy systemmodels, asmarket behavior substan-

tially influences stakeholders’ costs and investment strategies.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Case study data This paper https://doi.org/10.5281/zenodo.11124479

ecoinvent 3.7.1 (APOS) Wernet et al.24 https://ecoinvent.org/

Software and algorithms

Python 3.6.12 van Rossum et al.33 https://www.python.org/

Pyomo 5.7.3 Hart et al.34 http://www.pyomo.org/

Gurobi 9.0.0 Gurobi Optimization LLC35 https://www.gurobi.com/

SecMOD This paper https://doi.org/10.5281/zenodo.11124479
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, André Bardow (abardow@

ethz.ch).
Materials availability

This study did not generate any new reagents.
Data and code availability

� The data used in our case study has been deposited at zenodo and is publicly available as of the date of publication. TheDOI is listed in

the key resources table. The life cycle inventory data from ecoinvent used in our case study cannot be deposited in a public repository

because it requires a separate license.
� All original code has been deposited at zenodo and is publicly available as of the date of publication. The DOI is listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Model description

In the following, we outline the formulation of 1) the centralized electricity systemmodel that considers a joint objective function for all players

in a single level and 2) the decentralized electricity system model that considers capacity expansion and markets in a bilevel optimization.

Furthermore, to determine theNash-equilibriumbetween countries for the decentralizedmodel, we describe the tailored solution algorithms

applied.

Both the centralized and the decentralized problems are formulated in the energy system modeling and optimization framework

SecMOD36 and aim to identify a transition pathway from the initial existing capacities toward carbon-neutral electricity systems at the end

of the transition horizon. To identify a transition pathway, the capacity expansion for electricity generation technologies (Further information

on the case study) of all countries is determined in multiple investment years along the transition horizon following a rolling-horizon

approach.25 The rolling horizon approach is adapted to acknowledge myopic foresight and conveniently decomposes the multi-period in-

vestment problem into computationally tractable subproblems. The capacity expansion is determined by minimizing an objective function

while satisfying spatially and temporally resolved electricity demands, considering the availability and cost of electricity generation technol-

ogies, and considering additional constraints describing technical and environmental limitations.

As decision variables of the optimization problem, we consider the capacity expansion of electricity generation technologies, their oper-

ation, and the electricity transmission between countries. In the centralized approach, all decision variables are determined jointly. In the de-

centralized approach, the capacity expansion is determined for each country on the upper level of the bilevel problem. The operation of elec-

tricity generation technologies and electricity transmission is determined on the lower level.
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Comparison of the centralized and decentralized modeling approaches
model aspect centralized decentralized

strategic behavior of player perfect cooperation competition

upper-level objective joint objective: total annualized cost of all players individual objective: total annualized cost of player,

including carbon-allowance & congestion

lower-level objective – operating cost of all players

upper-level decision variables capacity expansion, operation of capacities,

transmission

capacity expansion

lower-level decision variables – operation of capacities, transmission

carbon-allowance price neglected or exogenous formed in lower-level problem

electricity price neglected formed in lower-level problem

congestion management physical limitations physical limitations & economic considerations
The centralized and decentralizedmodels differ in the choice and representation of the objective function: The centralizedmodel assumes

a central planner and perfect cooperation among the countries. Therefore, a joint objective function is chosen, minimizing the total annual-

ized cost of all countries. The centralizedmodel neglects the individual objectives of countries within an electricity system. The GHG emission

limits are represented by a global constraint, eliminating the need for a carbon tax or allowances. The centralized model simplifies the prob-

lem formulation by neglecting individual objectives and trading on electricity and carbonmarkets, thereby eliminating opportunities for non-

cooperative behavior.

In real-world electricity systems, multiple stakeholders determine the capacity expansion and follow individual, possibly conflicting inter-

ests. In addition, the electricity trade is managed on electricity markets, andGHG emissions limits are enforced by a carbon price set by either

a tax or a carbon-allowance market. We model non-cooperative behavior in the decentralized approach by assuming a game situation in

which the countries aim to minimize their individual costs. Considering individual countries, we can no longer limit GHG emissiosn globally

on the upper level. Instead, the decentralized model includes the global GHG emission limit on the lower level of the bilevel problem, rep-

resenting a carbon-allowance market that results in carbon prices (Equations 31, 32, and 33). Similarly, the decentralized model includes

energy balances on the lower level of the bilevel problem, representing electricity markets that result in electricity prices (Equation 23). To

minimize their individual costs, the countries invest in energy conversion capacities to generate and trade electricity and satisfy their time-

dependent electricity demands.

Game-theoretical approach

The transition pathway of the multi-national electricity system consists of consecutive investment decisions of the players within the transition

horizon. We represent the non-cooperative behavior of the players in each investment decision as a multi-leader-single-follower Stackelberg

game.6 In the decision process, each country n˛N is a leader that minimizes its total cost by determining its capacity expansion strategy xn.

After the countries determine the electricity generation capacity expansion as leaders, the operation of the capacity yn is determined on the

joint electricity market as the single follower. We assume that players can only influence their own strategy. For each country, we hence as-

sume complete knowledge of 1) the other countries’ optimal capacity expansion strategies and 2) the behavior of the shared electricity and

carbon markets.

For the non-cooperative game, a Nash-equilibrium37 is sought such that no country improve their situation by changing their own strategy

(as applied in 4,8,15,16,9):

ð~x; ~yÞ =
�
ð~x1; ~y1Þ; ð~x2; ~y2Þ;.

�
~xjN j; ~y jN j

��
Hence, the capacity expansion and operational strategy of each country n˛N is at an optimal solution from the set of optimal solutions

Snðð~x~n
; ~y~n

Þ~n˛N \n
Þ given the strategies of all other countries ð~x~n

; ~y~n
Þ~n˛N \n

:

~xn; ~yn ˛Sn

�ð~x
~n
; ~y

~n
Þ
~n˛N \n

�
; c n˛N

The total cost of each country consists of operating costs, investment costs, congestion costs on the electricity market, and carbon-allow-

ance costs. Hence, the countries act as leaders by setting the conditions for trading on the commonmarkets. The commonmarkets minimize

the total operating costs for supplying all electricity demands based on the available electricity generation capacities of the leaders. Hence,

themarkets act as a follower. Themarkets consist of an electricity market governing the electricity trade between countries and a carbonmar-

ket constraining the total GHG emissions. The prices for electricity congestion and carbon-allowances are determined by the market model

and considered by the leaders in their capacity expansion strategies.
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Solution method

In each investment year a˛A of the transition horizon, we solve the multi-leader-single-follower Stackelberg game by dividing it into

individual single-leader-single-follower Stackelberg games for each country. We iterate between the individual games via a Gauss-

Seidel algorithm38 to obtain a Nash-equilibrium, which is a common approach in the literature (e.g., 4,14,39,40) due to computational ef-

ficiency for larger problem sizes compared to the solution of a complementarity problem.40,41 However, efficient formulations via (mixed)

complementarity problems are promising, as related large-scale market equilibrium problems have been solved following this

approach.42

In the single-leader-single-follower Stackelberg game, we assume the optimal capacity expansion strategies of all other countries to be

fixed. In each single-leader-single-follower Stackelberg game, the countries have full knowledge of the behavior of the markets. Hence, we

formulate the Stackelberg game of each country n˛N as a nested optimization problem (Equations 1, 2, 3, 4, 5, and 6), with the country’s

objectives on the upper level (Equation 1) and themarket’s objective on the lower level (Equation 3). The formulation is discussed in full detail

in method details - detailed problem formulation.

min
xn ;y

Ctot
n = Cinv

n ðxnÞ + Cop
n ðyÞ + Ctrade

n

�
y; c�

n;e;t

�
+CCO2

n

�
y; cCO2

�
(Equation 1)
s:t:f nðxnÞ% 0 (Equation 2)
y ˛ argmin
y0

X
n˛N

Cop
n ðy 0Þ (Equation 3)
s:t:qdem
n;t +qexp

n;t � qprod
n;t � qimp

n;t � qnsd
n;t = 0:

�
c�n;e;t

�
;c n˛N ; t ˛ T (Equation 4)
X
n˛N

En %Emax +EOS :
�
cCO2

�
(Equation 5)
gðy 0; xnÞ%0 (Equation 6)

The objective function in the upper level (Equation 1) includes the investment cost Cinv
n , operating cost Cop

n , congestion cost from trading

Ctrade
n , and the emission cost CCO2

n of the considered country n. The investment cost and operating costs in the upper-level objective depend

on the upper-level variables xn, comprising investment decisions, and on the lower-level variables y, including the operational decisions of the

electricity generation units of the considered country n. In addition, the objective includes congestion and emission costs that depend on the

electricity price c�n;e;t and the carbon-allowance price cCO2 that are dual variables of the lower level. In that sense, the nested optimization

problem (1)-(6) is not a conventional bilevel optimization problem. As the lower-level problem is linear and we replace it using strong duality

to a single-level optimization, the presence of the dual variables in the problem formulation does not add major complications. The formu-

lation of the cost contributors is described in detail in Equations 12, 15, 16, and 18.

The constraints in the upper level (Equation 2) govern the capacity expansion limits for the considered country n.

The electricity market minimizes social welfare costs (Equation 3) and is represented in the lower level. Hence, the joint operating costs for

satisfying the inelastic electricity demands are minimized by optimizing the operation of power plants of all countries n˛N , assuming known

investment strategies and plant availabilities. Trading on the electricity market needs to satisfy the electricity demands. Hence, an electricity

balance equation is included (Equation 4), where the electricity demand qdem
n;t and the electricity exported to neighboring countries qexp

n;t need

to equal the sum of produced electricity qprod
n;t , electricity imported from neighboring countries qimp

n;t , and non-served or curtailed electricity

demand qnsd
n;t for all countries n˛N in all considered time steps t˛ T . We assume zonal pricing of electricity with one bidding zone per de-

cisionmaker. The dual variable corresponding to the electricity balance is the locational market clearing price of electricity c�n;e;t and is consid-

ered in the congestion cost of the leader’s objective function. The curtailed electricity demand is a slack variable penalized heavily in the

objective of the electricity market.

As emission trading enforces increasingly strict GHG emission limits, the GHG emissions of all countries are limited to a maximum value

Emax (Equation 5). The slack variable EOS is heavily penalized in the operating costs of both upper and lower-level objectives. The dual var-

iable corresponding to theGHGemission constraint is the carbon-allowance price cCO2 and is also considered on the upper level when deter-

mining the carbon-allowance cost of the leader. Additional lower-level constraints (Equation 6) model technical aspects of the electricity sys-

tem, including operating limits of electricity generation units and the DC-load-flow model for transmission.43

We reformulate the bilevel problem for each country into a single-level problem via strong duality, resulting in a mathematical prob-

lem with equilibrium constraints (MPEC). The MPEC contains bilinear terms in the strong duality equation of the lower-level problem, as

is standard in reformulating bilevel problems. It also contains bilinear terms in the objective function due to the presence of dual vari-

ables of the lower-level problem. As the MPEC is based on strong duality of the lower-level problem, the Karush-Kuhn-Tucker condi-

tions of the lower-level problem are met in the feasible points of the MPEC, and thus also in the optimal solution. We, therefore, can use
iScience 27, 110168, July 19, 2024 13
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the stationarity and complementarity conditions of the Karush-Kuhn-Tucker conditions of the lower-level problem to reformulate the

bilinear terms in the objective function of the MPEC. This substantially reduces the number of bilinear terms.44 The remaining bilinear

term in the formulation is approximated via binary expansion.45 Overall, the reformulation and approximation results in a mixed-integer

linear program (MILP) that can be solved using commercial solvers. Details of the reformulation of the MPEC can be found in detailed

problem formulation.

The capacity expansion strategy of a country can be determined by solving the reformulated single-level problem assuming fixed strate-

gies for all other countries. To determine theNash-equilibrium of the capacity expansion strategies, the single-level problem is solved repeat-

edly in the Gauss-Seidel algorithm. We thus allow each country to adjust its investment strategy based on the investment strategies of the

other countries:
Solution method for the multi-leader-single-follower Stackelberg game

The multi-leader-single-follower Stackelberg game is solved in every investment year of the investment horizon a˛A. The multi-leader-single-follower

Stackelberg game is divided into single-leader-single-follower problems for each country n˛N that are reformulated to a single-level mathematical

problem with equilibrium constraints (MPEC) Equations 1, 2, 3, 4, 5, and 6. The Gauss–Seidel algorithm is used to iteratively determine a Nash-equilibrium to

the multi-leader-single-follower problem. The Gauss–Seidel algorithm terminates when reaching the maximum number of iterations i = imax or the

convergence criterion DC%DCmax .

14 iScience 27, 110168, July 19, 2024
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We initialize the Gauss-Seidel algorithm with the investment strategies of all countries from the centralized optimization. Next,

we sequentially solve the MPEC for each country, assuming fixed investment decisions of all other countries. We iterate through

all countries and update the capacity expansion strategy xn of the considered country n˛N after solving the MPEC. The capacity

expansion strategy is updated with a damping factor. In this study, a dampening factor of 0.65 yields good convergence to the

Nash-equilibrium. Furthermore, we observe no substantial impact of the order of countries in the Gauss-Seidel algorithm on the

final solution.

The Gauss-Seidel algorithm terminates once the maximum number of iterations imax is reached, or once the relative change of the upper-

level objective functions stays below a specified threshold DC =
���Ctot

n �Ctot
n�1

Ctot
n� 1

���
2
%DCmax. In this study, we set the relative convergence

threshold to DCmax = 0:02.
Optimization settings

We formulate both the centralized and the decentralizedmodels using our energy systemmodeling and optimization framework SecMOD.36

The SecMOD framework is implemented in Python33 3.6.12 and builds on the optimization package Pyomo34 5.7.3. For both the centralized

and decentralizedmodels, we determine the capacity expansion of all countries in a rolling-horizon optimization without foresight. In the roll-

ing-horizon optimization, investment decisions are made in five-year steps from 2015 to 2050, in the investment years a˛A. A maximal an-

nualization horizon of 30 years and an interest rate of 5% are chosen. Hierarchical clustering46 is used to reduce the time series representing a

full year with an hourly resolution to 10 typical time steps without temporal coupling.

For the comparison of centralized and decentralized model, we solve all optimization problems using Gurobi35 9.0.0 on the High-

Performance Cluster of RWTH Aachen University and run sequentially on one node of the Intel Xeon Platinum 8160 ‘‘SkyLake’’ processor

with 2.1 GHz and 192 GB memory. The size of the optimization subproblems in the Gauss-Seidel algorithm depends on the parametrization

specific to each country and investment period. On average, the optimization problems contain 12932 constraints, 63433 continuous vari-

ables, and 60 binary variables. The presolve-heuristics of Gurobi reduce the problem size to an average of 5757 constraints, 14383 continuous

variables, and 49 integer variables, of which 42 remain binary. The total instantiation and solution times of all optimization problems is 82300 s.

The parameters settings of the Gauss-Seidel algorithm and of the Gurobi 9.0.0 solver are summarized in the table below. Note that the

relative gap of 10�4 is the Gurobi default optimality gap and tighter than needed: We solve the MPEC to very high accuracy compared to the

Gauss-Seidel algorithm.
Optimization parameter settings for each mathematical problem with equilibrium constraints

Parameter Value

relative gap 10�4

time limit 5000 s

binary expansion, number of discrete values 32

binary expansion big-M safety factor 5

Gauss-Seidel algorithm

relative convergence threshold DCmax 0.02

maximum iterations imax 100

damping factor 0.65
Further information on the case study

Our case study includes 21 countries connected by a transmission grid, modeled using the DC-load-flow approach.43

In total, 10 electricity production technologies are included that can be used in all countries. As conventional electricity generation tech-

nologies, we include hard coal, lignite, natural gas, and nuclear power plants. As renewable electricity generation technologies, we include

onshore and offshore wind, photovoltaics, concentrated solar power, run-of-river hydropower, and geothermal power plants. We further

model the existing capacities in 2015 and introduce country-specific capacity expansion limits.
List of countries considered as stakeholder in the case study

Abbreviation Country Abbreviation Country

AT Austria IE Ireland

BE Belgium IT Italy

BG Bulgaria LT Lithuania

(Continued on next page)
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Continued

Abbreviation Country Abbreviation Country

DE Germany LU Luxembourg

DK Denmark LV Latvia

EE Estonia NL Netherlands

ES Spain PL Poland

FI Finland PT Portugal

FR France SE Sweden

GR Greece SI Slovenia

HR Croatia

Data sources for the European electricity system model

Model component Database Reference

existing capacities JRC-IDEES 2015 Mantzos et al.47

investment & operating costs, fuel prices, and construction

years of existing electricity generation capacities; lifetimes

and capacity factors of conventional technologies

POTEnCIA (JRC) European Commission,48, Mantzos et al.49

maximum capacities ENSPRESO (JRC) Ruiz et al.50

capacity factors of volatile renewable electricity generation technologies EMHIRES (JRC) Gonzalez Aparicio et al.27

Efficiencies of conventional electricity generation technologies Eurostat Eurostat51

net-transfer capacities for cross-border transmission ENTSO-E ENTSO-E52

electricity demands ENTSO-E ENTSO-E53
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The European electricity system model is based on data provided by the European Union. The reference year of all data sources is 2015,

with the exception of the electricity demand by ENTSO-E, which is given for 2017. Figure 1 shows the overall infrastructure for electricity pro-

duction in the reference year 2015.

We aggregated transmission capacities between countries based on the reference grid of the 10-year network development plan by

ENTSO-E52 for the reference year 2015. Furthermore, the expansion of the grid is modeled exogenously using the net transfer capacities re-

ported in theGlobal Ambition scenario.52 The net transfer capacities reported by ENTSO-E are converted to a number of circuits in SecMOD,

assuming a length of 25 km and a voltage level of 220 kV for each grid element due to the lack of data. Furthermore, to consider the transit

through Switzerland, transmission lines are added between Germany and Italy, and between France and Austria. We neglect transmission

capacities to countries outside the 21 countries considered in our study.

The hourly electricity demand is based on the electricity load data published by ENTSO-E.53 We choose the demands of 2017 as data for

the base year 2015 is unavailable. We scaled the demand data of 2017 to arrive at the total electricity demand for 2015 of 2274 TWh/a given in

the POTEnCIA model48 to increase data consistency.
Lifetime and capacity factors of electricity generation technologies

Electricity generation technology Lifetime in years Capacity factor

coal 40 0.92

lignite 42 0.9

natural gas 32 0.93

nuclear 50 0.92

run-of-river hydro 50 0.93

geothermal 30 0.95

wind onshore 25 temporally and spatially resolved

wind onshore offshore 25 temporally and spatially resolved

photovoltaics 25 temporally and spatially resolved

concentrated solar power 30 temporally and spatially resolved

16 iScience 27, 110168, July 19, 2024
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Capacity factors describe the share of an installed generation capacity that can be used, reflecting downtime due to maintenance or limited

availability of intermittent renewable technologies. The capacity factors and the lifetime of the modeled electricity generation technologies are

adapted from the POTEnCIA energy model.48 Variable capacity factors for volatile renewable electricity generation technologies are taken from

the EMHIRES27 database. For countries where full-load hours are unavailable for wind power, we assumed similar capacity factors as inGermany

as a representative country in central Europe, for which we assume a high data quality due to large wind power capacities.

We define a country-specific capacity expansion limit for each electricity generation technology. The maximum capacity of conventional

power plants is assumed to be unlimited with the exception of nuclear power. For nuclear power, the maximum capacity is set depending on

the national policies at the time of writing. The existingmaximumcapacity is unlimited in Poland, while the existing capacities can be replaced

but not expanded after decommissioning in France, Slovenia, and Sweden. As the other countries have committed to phase-out nuclear po-

wer, themaximum capacity is set to zero for all other countries. Themaximumcapacity of geothermal and run-of-river hydro plants is assumed

to have already been reached in 2015. The maximum capacity for volatile renewable electricity generation technologies is adapted from the

ENSPRESO database, using 1) the central scenario for solar power plants (power density of 170 W/m2 and 3% land use of the available non-

artificial areas) and 2) the reference scenario for onshore and offshore wind power plants (large turbines for a capacity factor exceeding 20%

and a water depth of 0–60 m).

The conversion efficiencies of the electricity generation technologies for each country are based on inputs and outputs from Eurostat,54

leading to an efficiency averaged over the entire fleet of existing and new infrastructure. In case of data gaps, we used the country-indepen-

dent efficiencies from the POTEnCIA energy model.48 Further, we adopt the estimates of fixed and variable operating costs and investment

costs of each electricity generation technology from the POTEnCIA model.

We apply life cycle assessment to account for environmental impacts, distinguishing between infrastructure-related impacts due to the

construction and disposal of processes and operational impacts. In the optimization problem, we constrain the operational impacts in line

with the European target to achieve a carbon-neutral electricity system by 2050.55 The emission limit for 2015 is determined based on the

IDEES 2015 database47 and is set to the total emissions of all countries included in this study in the same year. The total emission limits

fall linearly to 0 by 2050 in both centralized and decentralized models. However, the European electricity system model is unable to comply

with the emission limit in 2050, as even renewable electricity generation technologies are associated with small life cycle operational GHG

emissions, and carbon dioxide removal technologies are excluded from ourmodel. In 2050, life cycle operational GHGemissions are reduced

by 93% and 92% compared to 2015 in the decentralized and centralizedmodels, respectively, with residual emissions of the centralizedmodel

exceeding the decentralized model by less than 10 Mt.

The life cycle inventories (LCIs) are adapted from Baumgärtner et al.25 The life cycle inventory of concentrated solar power plants is modeled

as in ecoinvent 3.7.1. For this study, we adapted the LCIs to account for double counting, asdiscussed indetail by Reinert et al.56 Furthermore, the

LCIs of the electricity generation technologies are adapted to the location where the technologies are installed by selecting the country-specific

process if possible. If a country-specific LCI is unavailable, we employ a proxy for the location using the following order: Europe without

Switzerland, rest of Europe (RER), ENTSO-E, western Europe (WEU), any country from the case study, global (GLO), rest of the world (RoW).

Detailed problem formulation

In the following, we provide the complete bilevel problem formulation of the capacity expansion problem for the current investment year a =

a. For the sake of brevity, we do not include the index of the current investment year in the problem formulation.

The indices and sets are.

(1) n˛N : players, here corresponding to countries, each represented by a single node

(2) p˛P: energy converter technology

(3) a˛A: investment years including past years and current year

(4) t˛ T : time step

(5) b˛B: energy carrier type

(6) l˛L: transmission line

The upper level (UL) primal variables xn for a single country n = n are:

xn =
n
Knew
n;p

o
p˛P

(Equation 7)

(1) Knew
n;p purchased capacity in the current investment year

The lower level (LL) primal variables y are:

y =
n
UCn;p;a;t ;q

nsd
n;b;t ;q

tr
l;t ; qn;t ;En;E

OS;Cop
n

o
n˛N ;p˛P;a˛A;t ˛ T ;b˛B;l˛L

(Equation 8)

(1) UCn;p;a;t unit commitment
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(2) qnsd
n;b;t non-served demand

(3) qtr
l;t transmitted power flow

(4) qn;t voltage level

(5) En national GHG emissions

(6) EOS GHG emission overshoot

(7) Cop
n national operational cost

The LL dual variables l are:

l =
n
c�
n;b;t ; c

CO2 ; lnsdn;b;t ; l
UC
n;p;a;t ; l

UC
n;p;a;t ; l

tr
l;t ; l

tr
l;t ; l

q
l;t ; l

OS; lEn ; l
C
n

o
n˛N ;b˛B;p˛P;t ˛ T ;a˛A;l˛L

(Equation 9)

(1) c�n;e;t locational market clearing price

(2) c�n;b˛B\feg;t import price

(3) cCO2 carbon allowance price

(4) lnsdn;b;t dual variable corresponding to the lower limit of qnsd
n;b;t

(5) lUCn;p;a;t dual variable corresponding to the lower limit of UCn;p;a;t

(6) lUCn;p;a;t dual variable corresponding to the upper limit of UCn;p;a;t

(7) ltrl;t dual variable corresponding to the lower limit of qtr
l;t

(8) ltrl;t dual variable corresponding to the upper limit of qtr
l;t

(9) lql;t dual variable corresponding to to Equation 30

(10) lOS dual variable corresponding to EOS

(11) lEn dual variable corresponding to to Equation 33

(12) lCn dual variable corresponding to Equation 15

The nested problem formulation of the capacity expansion problem of country n = n is:

min
xn ;y

Ctot
n = Cinv

n +Cop
n +Ctrade

n +CCO2
n (Equation 10)

s.t. Equations 12, 15, 16, 17, 18, 20, 21, and 22

y ˛ argmin
y0

X
n˛N

Cop
n +COS (Equation 11)

s.t. Equations 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33

The UL objective (Equation 10) is the total costs Ctot
n of country n = n and consists of the four elements:

(1) annualized investment costs Cinv
n ,

(2) operating costs Cop
n ,

(3) congestion costs resulting from trading Ctrade
n ,

(4) carbon costs CCO2

n .

The LL objective (Equation 11) represents the clearing of the electricity market and consists of two elements.

(1) the sum of operating costs Cop
n over all countries n˛N , and

(2) the overshoot penalty for violating the emission constraint COS if applicable.

The elements of the UL and LL objective can be expressed in terms of the primal variables and the lower level dual variables ((7)-(9)) as

follows:

The annualized investment costs Cinv
n depends on the new capacities Knew

n;p build in the regarded investment year a and the cost of the

existing capacities Cinv;ex
n .

Cinv
n =

X
p˛P

 
c invp;a

PVFp
Knew
n;p

!
+Cinv;ex

n (Equation 12)

Here, cinvp;a is the specific investment costs of energy converter p in the investment year a. PVFp is the technology-specific net present value

factor, a parameter calculated with the interest rate i for the annualization horizon hp.

PVFp =
ð1+iÞhp � 1

ð1+iÞhp i
; c p˛P (Equation 13)
18 iScience 27, 110168, July 19, 2024



ll
OPEN ACCESS

iScience
Article
As annualization horizon hp, we selected the smaller value between the maximum annualization horizon hmax
p = 30 years and the compo-

nent lifetime hlifep .

hp = min
n
hmax
p ;hlife

p

o
; c p˛P (Equation 14)

The cost of the existing capacitiesCinv;ex
n represents the annualized investment cost of previous investments that have not yet been written

off. Since the annualized investment cost of existing capacities is a parameter, it only adds an offset to the objective function and does not

impact the optimal solution. Here, we have included the annualized investment cost of existing capacities in the objective function for the sake

of completeness as we do consider the cost of existing capacities in our analyses in the case study.

The operating costs Cop
n include variable operating costs and costs for non-served demand.

Cop
n =

X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;Cn;p;a;t UCn;p;a;t +
X
t ˛ T

Dtt
X
b˛B

cnsdb;t q
nsd
n;b;t ; :

�
lCn
�

c n˛N (Equation 15)

Here,Dtt is the time slice weight,UCn;p;a;t is the utilized capacity of process p, and cprod;Cn;p;a;t is the variable operating price of utilizing process

p. The amount of non-served demand qnsd
n;b;t corresponds to energy carrier imports from outside the system boundary of the European energy

system, while the price of non-served demand cnsdb;t , corresponds to import prices of energy carriers. As we do not allow imports of electricity

from outside the systemboundary of the European energy system, the non-served demand for electricity should always be zero. However, we

maintain the non-served demand for electricity as a slack variable that is penalized with a prohibitively high cost of 3000 EUR/MWh.

The congestion costs Ctrade
n resulting from electricity trading within the system boundary is calculated using the locational market clearing

price (LMCP) c�n;e;t :

Ctrade
n =

X
t ˛ T

�
qdem
n;e;t � qprod

n;e;t

�
c�n;e;t Dtt ; c n˛N (Equation 16)

The index e indicates electricity and is an element of the set of energy carrier types b˛B. The exogenous electricity demandqdem
n;e;t for every

country n is a parameter. The non-served electricity demand qnsd
n;e;t serves as a slack variable in the electricity balance is excluded from the

congestion cost to avoid benefits of curtailing load. In the optimal solutions of our case study, the value of the slack variable is always

zero. The electricity produced by each country qprod
n;e; is determined by taking the sum of electricity generated by all converter technologies

p built in all investment years a:

qprod
n;e;t =

X
a˛A

X
p˛P

TMn;p;e;a;tUCn;p;a;t ; c n˛N ; t ˛ T (Equation 17)

The conversion factors of the technology matrix TMn;p;e;a;t link the utilized capacity UCn;p;a;t of a energy converter technology p to the en-

ergy carrier b that the technology consumes or produces, where b = e corresponds to the energy carrier electricity.

The carbon cost CCO2
n of each country n consists of the carbon allowance cost and a share of the overshoot penalty for violating the emis-

sion limit.

CCO2
n = En c

CO2 + rdemn COS; c n˛N ; (Equation 18)

with the operational GHGemissions En of country n, the carbon allowance price c
CO2 , the total penalty for exceeding the overall emission limit

COS, and a parameter rdemn for allocating the overshoot penalty to the countries. The carbon allowance price cCO2 is the dual variable of the

emission limit constraint in Equation 31. The overshoot penalty is allocated to the countries based on the country’s fraction of overall elec-

tricity demand:

rdemn =

P
t ˛ T

Dttqdem
n;e;tP

n0 ˛N

P
t ˛ T

Dttqdem
n0 ;e;t

; c n˛N (Equation 19)

The total overshoot penalty COS is:

COS = cOSEOS; (Equation 20)

where cOS is the specific overshoot penalty and EOS the violation of the emission constraint. The constraints describing the violation of the

emission constraint is described in Equations 31 and 32.

In addition to the objective function, UL constraints are introduced: The new capacity that can be built Knew
n;p is constrained by themaximum

capacity Kmax
n;p and the already existing capacity Kex

n;p;a.

0%Knew
n;p ; c p˛P (Equation 21)
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Knew
n;p %max

(
Kmax
n;p �

X
a˛A

Kex
n;p;a; 0

)
; c p˛P (Equation 22)

The existing capacity Kex
n;p is a parameter and indicates the capacity of converter technology p that has been built in a construction year

prior to the current investment year a<a and has not yet reached the end of life. Furthermore, we apply the existing capacity Kex
n;p to model

investments that have to be made in the current investment year a = a.

In addition, the following LL constraints are introduced: For each country n and time step t, the power balance for electricity b = e is intro-

duced as an equality constraint:

qdem
n;e;t = qprod

n;e;t +qnsd
n;e;t +

X
l˛Lin

n

qtr
l;t +

X
l˛Lout

n

qtr
l;t ; :

�
c�n;e;t

�
c n˛N ; t ˛ T (Equation 23)

The exogenous demand qdem
n;e;t is a parameter that can be satisfied by electricity generation qprod

n;e;t (Equation 17). Alternatively, some exog-

enous demand can be curtailed. The amount of electricity curtailed is considered nonserved demand qnsd
n;e;t . Finally, the exogenous demand

can be satisfied by electricity transmission from neighboring countries qtr
l;t on line l. The sets Lin

n and Lout
n contain the lines defined as going in

or out of node n, respectively.

The non-served demand qnsd
n;b;t is non-negative:

qnsd
n;b;t R 0; :

�
lnsdn;b;t

�
; c n˛N ;b˛B; t ˛ T (Equation 24)

Apart from electricity b = e, all energy carrier types considered in this work b˛B\feg are fuels required by fossil power plants and corre-

spond to imports from outside the system boundary:

qnsd
n;b;t = �

X
p˛P

X
a˛A

TMn;b;p;a;t UCn;p;a;t ; :
�
c�n;b;t

�
c n˛N ;b˛B\feg; t ˛ T (Equation 25)

The utilized capacity UCn;p;a;t indicates for every country n how much each converter technology p with the construction year a is used in

time step t. The existing capacity Kex
n;p;a from investment years prior to the current investment year a˛A\fagmultipliedwith a time-dependent

capacity factor parameterCFn;p;t is an upper bound for the utilized capacityUCn;p;a;t (Equation 27). Both existing capacities and capacity factor

are parameters.

Accordingly, the utilized capacity of the current investment year a = a is limited by the new capacityKnew
n;p and any capacities that fixed to be

built exogenously in the investment year Kex
n;p;a (Equation 28). New capacity Knew

n;p can only be built in the current investment year and is a de-

cision variable.

0%UCn;p;a;t ; :
�
lUCn;p;a;t

�
c n˛N ;p˛P; a˛A; t ˛ T (Equation 26)
UCn;p;a;t %CFn;p;t K
ex
n;p;a; :

�
lUCn;p;a;t

�
c n˛N ;p˛P; a˛A\fag; t ˛ T (Equation 27)
UCn;p;a;t %CFn;p;t

�
Knew
n;p +Kex

n;p;a

�
; :
�
lUCn;p;a;t

�
c n˛N ;p˛P; t ˛ T (Equation 28)

Knew
n;p is treated as an exogenous parameter on the LL, although it is an UL variable for the current country n. For all other countries n˛ N \n,

Knew
n;p is not optimized on the UL and thus a parameter. The dual variables corresponding to the upper and lower limits on UCn;p;a;t are lUCn;p;a;t

denoted and lUCn;p;a;t .

The transmitted power qtr
l;t of all power lines l˛L is constrained by a maximum transmittable power qtr;max

l;t . The power flows in both di-

rections in a transmission line. Thus, qtr
l;t can be positive or negative:

�qtr;max
l;t %qtr

l;t %qtr;max
l;t ; :

�
ltrl;t ; l

tr
l;t

�
c l˛L; t ˛ T (Equation 29)

The maximum capacity of the transmission lines qtr;max
l;t is a property of the transmission line type, the number of circuits, the voltage level,

impedance, and resistance. The electrical properties are used to calculate the susceptance Bl. The susceptance describes the relationship

between the electricity flow qtr
l;t and the difference between the voltage level qn;t between the connected countries:

qtr
l;t = Bl Dql;t = Bl

�
qnout

l
;t � qnin

l
;t

�
; :
�
lql;t

�
c l˛L; t ˛ T (Equation 30)

One of the two countries connected by each line needs to be defined as the origin and the other as the destination. The choice of origin

and destination is necessary for the formulation of the electricity transmission and can be made arbitrarily as the flow qtr
l;t can be both positive

and negative. The node that is the destination or origin of line l is defined as ninl and noutl , respectively. The linear approximation of the alter-

nating current transmission grid as a DC load flow is described in depth by Overbye et al.43
20 iScience 27, 110168, July 19, 2024



ll
OPEN ACCESS

iScience
Article
Carbontrading is reducedtotheauction,neglectingbankingofallowances.Wetreat the lifecycleGHGemissionsexcluding infrastructureemis-

sionsEn as theauctionedcarbonallowances foreachcountryn. ThecapEmax is set asaglobal constraintontheannual, operationalGHGemissions

of all countries. We include a non-negative GHG emission overshoot EOS as a slack variable that is penalized heavily in UL and LL objective:X
n˛N

En % Emax + EOS; :
�
cCO2

�
(Equation 31)
EOS R0; :
�
lOS
�

(Equation 32)

The dual variable of the emission constraint (Equation 31) is the carbon allowance price cCO2 .

The operational GHG emissions En are calculated with the specific emissions for converter technology cprod;En;p;a;t .

En =
X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;En;p;a;t UCn;p;a;t ; :
�
lEn
�

c n˛N (Equation 33)

The bilevel problem (10)-(33) is reformulated to a single-levelMathematical Programwith EquilibriumConstraints (MPEC) via strong duality

of the LL. The strong duality equation is:

X
n˛N

Cop
n + cOSEOS +

X
t ˛ T

Dtt

 
�
X
n˛N

qdem
n;e;t c

�
n;e;t +

X
n˛N

X
p˛P

X
a˛A\a

CFn;p;tK
ex
n;p;al

UC
n;p;a;t

+
X
n˛N

X
p˛P

CFn;p;t

�
Knew
n;p + Kex

n;p;a

�
lUCn;p;a;t +

X
l˛L

qtr;max
l;t ltrl;t +

X
l˛L

qtr;max
l;t ltrl;t

!
+ Emax cCO2 = 0

(Equation 34)

The reformulation to an MPEC results in bilinear terms in the strong duality equation:

Knew
n;p lUCn;p;a;t; c p˛P; t ˛ T (Equation 35)

Note that Knew
n;p is a variable for the current country n = n. For all other countries n˛N \n, Knew

n;p is not optimized on the UL and thus a

parameter.

Furthermore, bilinear terms occur in the objective function of the MPEC (terms (36) and (37)).

For computational performance, we aim for a mixed-integer linear programming formulation of the single-level problem. Therefore, the

objective function is reformulated following the approach described by Ruiz and Conejo,44 to address the bilinear terms (36) and (37) in the

objective function of the MPEC.

�
X
t ˛ T

Dtt c
�
n;e;t

X
a˛A

X
p˛P

TMn;p;e;a;tUCn;p;a;t (Equation 36)
En c
CO2 (Equation 37)

The reformulation uses selected stationarity (Equation 32) and complementarity conditions (Equation 38) of the Karush-Kuhn-Tucker con-

ditions of the LL problem.

In particular, the used stationarity conditions, with the Lagrangian function L are:

vL

vUCn;p;a;t
: 0 = Dtt

 
�
X
b˛B

TMn;b;p;a;t c
�
n;b;t � lUCn;p;a;t + lUCn;p;a;t � cprod;E

n;p;a;t l
E
n � cprod;C

n;p;a;t l
C
n

!
; c n˛N ;p˛P; a˛A; t ˛ T (Equation 38)
vL

vqnsd
n;b;t

: 0 = Dtt
�
� c�n;b;t � lnsdn;b;t � cnsdb;t l

C
n

�
; c n˛N ;b˛B; t ˛ T (Equation 39)
vL

vEn
: 0 = lEn + cCO2 ; c n˛N (Equation 40)
vL

vCop
n

: 0 = 1+ lCn ; c n˛N (Equation 41)

Furthermore, the used complementarity conditions of Equations 27, 28, and 24 are:

lUCn;p;a;t UCn;p;a;t = 0; c n˛N ;p˛P; a˛A; t ˛ T (Equation 42)
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�
CFn;p;tK

ex
n;p;a � UCn;p;a;t

�
lUCn;p;a;t = 0; c n˛N ;p˛P; a˛A\a; t ˛ T (Equation 43)
�
CFn;p;t

�
Knew
n;p +Kex

n;p;a

�
� UCn;p;a;t

�
lUCn;p;a;t = 0; c n˛N ;p˛P; t ˛ T (Equation 44)
qnsd
n;b;tl

nsd
n;b;t = 0; c n˛N ;b˛B; t ˛ T (Equation 45)

The nonlinear term (36) can be reformulated using Equation 38:

�
X
t ˛ T

Dtt
X
a˛A

X
p˛P

c�n;e;t TMn;e;p;a;t UCn;p;a;t =
X
t ˛ T

Dtt
X
a˛A

X
p˛P

 X
b˛B\e

TMn;b;p;a c
�
n;b;t + lUCn;p;a;t + lUCn;p;a;t + cprod;En;p;a;t l

E
n + cprod;Cn;p;a;t l

C
n

!
UCn;p;a;t

(Equation 46)

The reformulation of term (36) results in additional nonlinearities in Equation 46:X
t ˛ T

Dtt
X
a˛A

X
p˛P

X
b˛B\e

TMn;b;p;a c
�
n;b;t UCn;p;a;t (Equation 47)
X
t ˛ T

Dtt
X
a˛A

X
p˛P

�
lUCn;p;a;tUCn;p;a;t � lUCn;p;a;tUCn;p;a;t

�
(Equation 48)
X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;En;p;a;t l
E
n UCn;p;a;t (Equation 49)
X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;Cn;p;a;t l
C
n UCn;p;a;t (Equation 50)

Nonlinear term (47) can be further reformulated to a linear expression using Equations 25, 39, 45, and 41:X
t ˛ T

Dtt
X
a˛A

X
p˛P

X
b˛B\e

TMn;b;p;a c
�
n;b;t UCn;p;a;t = �

X
t ˛ T

Dtt
X

b˛B\e

qnsd
n;b;tc

nsd
b;t (Equation 51)

Nonlinear term (48) can be reformulated using Equations 42, 43, and 44:

X
t ˛ T

Dtt
X
a˛A

X
p˛P

�
lUCn;p;a;tUCn;p;a;t � lUCn;p;a;tUCn;p;a;t

�
= �

X
t ˛ T

Dtt
X
p˛P

 X
a˛A\a

CFn;p;tK
ex
n;p;al

UC
n;p;a;t + CFn;p;t

�
Kex
n;p;a + Knew

n;p

�
lUCn;p;a;t

!

(Equation 52)

Nonlinear term (49) can be reformulated using Equations 33 and 40:X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;E
n;p;a;t l

E
n UCn;p;a;t = Enl

E
n = � Enc

CO2 (Equation 53)

Nonlinear term (50) can be reformulated using Equation 41X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;Cn;p;a;t l
C
n UCn;p;a;t = �

X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;Cn;p;a;t UCn;p;a;t (Equation 54)

Inserting the reformulated terms (51)-(54) into the objective function (Equation 10) results in:

Ctot
n = Cinv

n +
X
t ˛ T

Dtt
X
a˛A

X
p˛P

cprod;Cn;p;a;t UCn;p;a;t +
X
t ˛ T

Dtt
X
b˛B

cnsdb;t q
nsd
n;b;t

+
X
t ˛ T

Dttc
�
n;e;t

 
qdem
n;e;t �

X
a˛A

X
p˛P

TMn;p;e;a;t UCn;p;a;t

!
+ En c

CO2 + rdemn COS

= Cinv
n +

X
t ˛ T

Dttc
�
n;e;tq

dem
n;e;t +

X
t ˛ T

Dttc
nsd
e;t q

nsd
n;e;t �

X
t ˛ T

Dtt
X
p˛P

CFn;p;t

 X
a˛A\a

Kex
n;p;al

UC
n;p;a;t +

�
Kex
n;p;a + Knew

n;p

�
lUCn;p;a;t

!
+ rdemn COS

(Equation 55)

The remaining nonlinear term in the reformulated objective function (Equation 55) also occurs in the strong duality (Equation 34):
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Knew
n;p lUCn;p;a;t ;c p ˛ P; t ˛ T (Equation 56)

The remaining nonlinear term (56) is approximated via binary expansion45 to arrive at a MILP formulation. The primal variable Knew
n;p is dis-

cretized using 32 discrete values.

For each investment period, the MPEC is solved for all countries using a diagonalization scheme. Before proceeding with the next invest-

ment period,

(1) we update existing capacities Kex
n;p;a by including newly built capacities, and by removing capacities that are retired, and

(2) we update annualized investment costsCinv;ex
n by including the annualized cost of newly built capacities and excluding investments that

are written off.
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