001038165 001__ 1038165 001038165 005__ 20250310131242.0 001038165 0247_ $$2doi$$a10.1109/TIM.2025.3527590 001038165 0247_ $$2ISSN$$a0018-9456 001038165 0247_ $$2ISSN$$a0096-2260 001038165 0247_ $$2ISSN$$a1557-9662 001038165 0247_ $$2ISSN$$a2168-1902 001038165 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01212 001038165 0247_ $$2WOS$$aWOS:001410586700017 001038165 037__ $$aFZJ-2025-01212 001038165 082__ $$a620 001038165 1001_ $$0P:(DE-Juel1)185033$$aZimmer, Marcel$$b0$$eCorresponding author 001038165 245__ $$aDigital Twins for Building Pseudo-Measurements 001038165 260__ $$aNew York, NY$$bIEEE$$c2025 001038165 3367_ $$2DRIVER$$aarticle 001038165 3367_ $$2DataCite$$aOutput Types/Journal article 001038165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738855092_17463 001038165 3367_ $$2BibTeX$$aARTICLE 001038165 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001038165 3367_ $$00$$2EndNote$$aJournal Article 001038165 520__ $$aBuilding control architectures are strongly limited by the systematic lack of measurements at user-relevant locations. This paper proposes a digital twin architecture grounded in Correlated Gaussian Processes (Corr-GP) that provide information in the form of pseudo-measurements. Tested with thermal and CO2 measurements collected from the field, close-to-person pseudo-measurements are provided based on the continuous input of remotely located measurement signals. In particular, detailed short-term as well as long-term results are provided for both temperature and CO2 digital twins. We show that the proposed approach is trainable on only a few days of measurements. This property makes the proposed approach especially useful in field applications, where alternative algorithms, such as, for example, neural network architectures, are not capable of dealing with small amounts of data. We demonstrate how to adjust the proposed approach to provide temperature and CO2 digital twins for the generation of pseudo-measurements. Within the given framework, we show how to utilize the proposed digital twin to couple multiple reference sensors to provide close-to-person pseudo-measurements. By extending the Corr-GP approach to a non-zero prior mean formulation, we show how to reduce the included information by the reference sensors. More precisely, the extended approach can be defined as a digital twin with only a single reference sensor. This enables a reliable long-term application by avoiding the need for retraining caused by changing seasonalities within the signal characteristics. That is, we show that the digital twin trained in summer can be operated in winter. 001038165 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0 001038165 536__ $$0G:(DE-HGF)POF4-1123$$a1123 - Smart Areas and Research Platforms (POF4-112)$$cPOF4-112$$fPOF IV$$x1 001038165 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001038165 7001_ $$00009-0000-6346-2200$$aBuechel, Maximilian$$b1 001038165 7001_ $$0P:(DE-Juel1)177738$$aRedder, Florian$$b2 001038165 7001_ $$0P:(DE-Juel1)174440$$aMork, Maximilian$$b3 001038165 7001_ $$0P:(DE-Juel1)142000$$aPesch, Thiemo$$b4 001038165 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b5 001038165 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b6 001038165 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b7 001038165 773__ $$0PERI:(DE-600)2027532-8$$a10.1109/TIM.2025.3527590$$gp. 1 - 1$$p2504510$$tIEEE transactions on instrumentation and measurement$$v74$$x0018-9456$$y2025 001038165 8564_ $$uhttps://juser.fz-juelich.de/record/1038165/files/Invoice_APC600623349.pdf 001038165 8564_ $$uhttps://juser.fz-juelich.de/record/1038165/files/Digital_Twins_for_Building_Pseudo-Measurements-2.pdf$$yOpenAccess 001038165 8767_ $$8APC600623349$$92025-01-27$$a1200211174$$d2025-02-05$$ePage charges$$jZahlung erfolgt$$zUSD 530,- 001038165 8767_ $$8APC600627267$$92025-02-06$$a1200211539$$d2025-02-13$$eAPC$$jZahlung erfolgt$$zUSD 2495 001038165 909CO $$ooai:juser.fz-juelich.de:1038165$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185033$$aForschungszentrum Jülich$$b0$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$60009-0000-6346-2200$$aForschungszentrum Jülich$$b1$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177738$$aForschungszentrum Jülich$$b2$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174440$$aForschungszentrum Jülich$$b3$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142000$$aForschungszentrum Jülich$$b4$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b5$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b6$$kFZJ 001038165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b7$$kFZJ 001038165 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0 001038165 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1123$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1 001038165 9141_ $$y2025 001038165 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-06 001038165 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001038165 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T INSTRUM MEAS : 2022$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001038165 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T INSTRUM MEAS : 2022$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06 001038165 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06 001038165 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001038165 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001038165 920__ $$lyes 001038165 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0 001038165 980__ $$ajournal 001038165 980__ $$aVDB 001038165 980__ $$aI:(DE-Juel1)ICE-1-20170217 001038165 980__ $$aAPC 001038165 980__ $$aUNRESTRICTED 001038165 9801_ $$aAPC 001038165 9801_ $$aFullTexts