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Abstract— Building control architectures are strongly limited
by the systematic lack of measurements at user-relevant locations.
This article proposes a digital twin (DT) architecture grounded
in correlated Gaussian processes (Corr-GPs) that provide infor-
mation in the form of pseudo-measurements. Tested with thermal
and CO2 measurements collected from the field, close-to-person
pseudo-measurements are provided based on the continuous
input of remotely located measurement signals. In particular,
detailed short-term as well as long-term results are provided for
both temperature and CO2 DTs. We show that the proposed
approach is trainable on only a few days of measurements.
This property makes the proposed approach especially useful
in field applications, where alternative algorithms, such as, for
example, neural network architectures, are not capable of dealing
with small amounts of data. We demonstrate how to adjust the
proposed approach to provide temperature and CO2 DTs for
the generation of pseudo-measurements. In the given framework,
we show how to utilize the proposed DT to couple multiple ref-
erence sensors to provide close-to-person pseudo-measurements.
By extending the Corr-GP approach to a nonzero prior mean
formulation, we show how to reduce the included information
by the reference sensors. More precisely, the extended approach
can be defined as a DT with only a single reference sensor. This
enables a reliable long-term application by avoiding the need
for retraining caused by changing seasonalities within the signal
characteristics. That is, we show that the DT trained in summer
can be operated in winter.

Index Terms— Air quality, digital twins (DTs), Gaussian
processes, pseudo-measurements, thermal measurement.

I. INTRODUCTION

PEOPLE spend approximately 60–70% of their time
indoors [1], and this share is increasing even further [2].

As indoor air quality (IAQ) and thermal comfort (TC) directly
relate to occupant well-being, productivity, and building
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energy consumption [3], [4], monitoring and control of IAQ
and TC are essential elements of successful building operation.

Guidelines on TC have been implemented in the
form of international standards, for example, through ISO
7730:2005 [5]. These standards are based on the calculation
of a predicted mean vote (PMV), and a predicted predicted
percentage of dissatisfied (PPD). Recent studies dealt with
more adaptive approaches or even individual TC models that
make use of numerous in-depth measurements such as skin
temperature or heart rate measured via wearables [6]. Modern
IoT-enabled technologies and sensor networks can signifi-
cantly improve occupant comfort and outperform classical
approaches [6]. However, they also require a high number of
additional sensors, a sophisticated IoT setup [7], and a high
level of data protection [8], [9].

Two prominent and widespread indicators for building
indoor comfort are the temperature [10] and the CO2 level
representing air quality [11]. Both quantities are commonly
measured once per building space, for example, in the form
of a sensor integrated into a room control panel. Based on the
obtained air temperature and a user-defined temperature set-
point, either the buildings’ central heating or a room-individual
heating appliance, for example, a radiator, is operated to estab-
lish TC [12]. In this typical scenario, the control performance,
and thus the TC, is strongly affected by sensor placement
and accuracy. Nowadays, the trend is moving toward multiple
stationary sensors per room at different locations, even in
existing buildings [12]. It would therefore be of great benefit
to be able to use these measurements to predict individual,
close-to-person temperature profiles and thereby unlock com-
fort improvements and energy-saving potentials in building
operation. Both standard (e.g., P/PI/PID) and advanced control
concepts, for example, model predictive controllers (MPCs)
could thus be upgraded to provide comfort specifically to the
occupied zone. At the same time, additional (personal) sensor
hardware would be avoided, which otherwise would result in
additional financial effort and, as being located in the occupied
zone, could constitute a disturbance to the occupants.

In this context, digital twins (DTs) have been applied [13].
DTs have gained widespread attention across different engi-
neering disciplines [14] and applications spread from the
temperature distribution of power equipment [15] and power
electronics [16], to DT-driven measurements in robotics [17]
and real-time monitoring of electric distribution grids [18].
Reviewed in [13], DTs are applied for TC and energy effi-
ciency in buildings. In this field, applications range from
specific quantities, such as energy saving by lighting [19],
to heterogeneous data approaches [20]. However, so far,
dedicated algorithms applied as in our proposed conceptual
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structure have not been used to provide indoor close-
to-person temperature or CO2 pseudo-measurements [13].
Pseudo-measurements have been considered in the domain
of distribution grids [18], uncertainty quantification of power
system state estimation [21], as well as for estimation of GPS
outages [22].

In this work, which is an extension of [23], we pro-
pose the concept of DTs for indoor temperature and CO2
pseudo-measurements and propose a realization by correlated
Gaussian processes (Corr-GPs). First, we provide temperature
and CO2 pseudo-measurements for a user-relevant position
based on two permanently installed sensors, called refer-
ence measurements hereafter, in a real-life office building.
In addition to the reference measurements installed at stan-
dard locations, an additional measurement is collected at
a user-relevant position. Based on the three measurements,
a correlated Gaussian process is trained. Then, we show how
to define a nonzero prior mean function in the context of
thermal and CO2 DTs for pseudo-measurement generation.
This accounts for training the proposed approach by deviations
from typical patterns instead of the signals themselves. By that,
not only a reliable long-term application can be archived
without the need for retraining the DT but also a single
reference sensor suffices as input. We give a twofold evaluation
of the proposed approach with respect to a trivial algorithm
(TRIV) as well as a standard time-series vector autoregression
moving average model (VARMA) [24]. First, the performance
of the proposed approach is evaluated and compared to the
given alternative algorithms with respect to the consecutive
14 days after the training period. Second, a seven-month
long-term analysis is provided. We show that the proposed
multiinput approach outperforms the given alternatives, due
to its ability to determine inherent correlations across differ-
ent measurements. The provided results indicate the superior
ability of Corr-GPs to incorporate multiple signals, providing
an algorithmic solution for multisensor-equipped rooms and
buildings. Moreover, we show that the single-input Corr-GP
can be reliably utilized in long-term applications.

This article is organized as follows. In Section II, the
theoretical background is given. In Section III, we present
the proposed method. In Section IV, the case study is
described. The results are given in Section V. We conclude
with Section VI.

II. THEORETICAL BACKGROUND

A. Gaussian Processes

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution [25].
For the training set (X ,Y) and the test set X ∗, this formally
translates to the following equations. Let X be a compact
subset of Rn . We call µprior : X → R a prior mean function
and the positive semi-definite function κ : X × X ′

→ R a
kernel or kernel matrix with

K (X ,X ′)kl := (κ(xk, xl)) ∀xk ∈ X ∀xl ∈ X ′. (1)

Adding Iσn , where I denotes the identity matrix and σn ∈ R
incorporates noise into the kernel, that is,

Kn(X ,X ) = K (X ,X ) + Iσn. (2)

The posterior mean µpost, that is, the predictions, and the
posterior covariance function 6post, are computed by

µpost = µprior(X ∗)

+ K (X ∗,X )Kn(X ,X )−1(Y − µprior(X )) (3)

and

6post = K (X ∗,X ∗) − K (X ∗,X )Kn(X ,X )−1 K (X ,X ∗). (4)

The GP is trained by specifying a set of hyperparameters
defining κ by minimizing the negative log marginal likelihood

nlml =
1
2
(Y − µprior(X ))T Kn(X ,X )−1(Y − µprior(X ))

+
1
2

ln |Kn(X ,X )| +
N
2

ln(2π), (5)

where N denotes the number of training data points. To spec-
ify the corresponding model, we write GP(µprior, K (X ,X ′))

throughout the article.

B. Alternative Algorithms

Contrary to GPs, the alternative models, called TRIV and
VARMA as defined below, rely on equidistant time steps con-
sidering only the latest change-of-value (COV) measurement
per time step.

The TRIV-model providing pseudo-measurements SDT with
respect to one M = {1} or two M = {1, 2} reference
measurements Tm, m ∈ M and is defined as

TRIV =
1
2

M∑
m=1

(
Soffset

mj + Smj
)
, (6)

with Soffset
mj = (1/ i)

∑
i (Tmji − TDT j i ), where i is indexing

training days and j indexing time steps during a day.
The VARMA-model for one S⃗ = (S1, SDT)T and two S⃗ =

(S1, S2, SDT)T reference measurements, respectively, reads

VARMA = ν(t j ) + AR(p) + ϵ⃗ j + MA(q), (7)

with autoregression AR(p) = A1 S⃗m j−1+· · ·+Ap S⃗m j−p , moving
average MA(q) = M1ϵ⃗ j−1 + · · · + Mq ϵ⃗ j−q , Gaussian white
noise ϵ⃗ j ∼ N (0, σ⃗ 2), and a linear trend ν(t j ) = a⃗ + b⃗t j for
2 or 3-D square matrices A1, . . . , Ap, M1, . . . , Mq and vectors
a⃗, b⃗ ∈ R3 or R2, respectively. A least-squares algorithm is used
for training. In the given case study, we have p = q = 4.
Stationarity is achieved by subtracting the average daily
profile, analogous to the trivial approach.

III. PROPOSED APPROACH

A. DT For Pseudo-Measurements

The proposed concept of a DT for pseudo-measurements is
presented in Fig. 1. In the upper panel of Fig. 1, the training
phase of the model is shown. For a certain period, all collected
signals are used as training data for the DT. In the execution
phase, depicted in the lower panel of Fig. 1, the reference sig-
nals are continuously included in the model, while the signal of
interest is predicted at times t∗ of interest. It should be noted,
that there are two notions of inputs and outputs, visualized in
Fig. 1. Reference signals are continuously included (DT input)
while the signal of interest is predicted (DT output). For further
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Fig. 1. Proposed DT concept.

clarify, we write DToutput
input throughout the article. However,

inside the digital-twin realization by a Corr-GP described next,
the reference signals as well as the predictions are both outputs
of the multioutput GP (GP output), as functions of time (GP
input).

On an intraday basis, every new reference measurement is
continuously included in the DT to update the adaptive model
in a rolling horizon fashion. As visualized in Fig. 2, for every
new day N , the data of the previous day N − 1 is deleted on
a daily basis. The proposed approach is only updated with the
data from the day on which the pseudo-measurements should
be provided. The DT runs between 8:00 am (tstart) and 7:00 pm
(tend). In addition, an initialization phase, labeled as init in
Fig. 2, is used, where before the operational period, reference
measurements are included.

B. Correlation-Based Gaussian Processes for DTs

Certainly, correlations between differently located mea-
surements of temperature signal T (t), t ∈ T , as well as
CO2 signals, within a room are given. The key mathematical
operation reflecting this correlation property is given by the
tensor product, denoted by ⊗, yielding GP models with
multiple outputs [25], [26]. This construction of a separable
kernel is a composition of a kernel describing an individual
signal’s characteristics and a cross-correlation kernel. Thus,
the proposed structure accounts for qualitative similarities
across neighboring sensor measurements by construction.
We refer to such models within the class of multioutput GPs as
Corr-GP [26].

In terms of matrices, the tensor product is given by the
Kronecker product, also denoted by ⊗. In particular, for a
kernel matrix K (T , T ′) and a symmetric positive semi-definite
d × d-matrix B[d], we have a d-dimensional model by

B[d]
⊗ K (T , T ′) =

b1,1 K (T , T ′) . . . b1,d K (T , T ′)
...

. . .
...

bd,1 K (T , T ′) . . . bd,d K (T , T ′)

. (8)

The dimension d of the coregionalization matrix, B[d], corre-
sponds to the number of coupled signals. A self-contribution

Fig. 2. Intraday rolling horizon for DT pseudo-measurement.

to the model of the individual measurements is given on the
diagonal of (8) while off-diagonal elements describe corre-
lations across measurements provided by different sensors.
Thus, the trainable hyperparameters {b1,1, . . . , bd,d} can be
seen as weights of individual contributions from the respective
measurements.

With this at hand, we may define a class of models, called
the linear coregionalization model (LCM), given by

KLCM(T , T ′) =

∑
q

B[d]

q ⊗ Kbasis,q(T , T ′), (9)

where q corresponds to the number of considered signals in
the given application.

The needed dataset defining the training period is a result
of this definition. The single-signals hyperparameters describ-
ing intraday characteristics can be determined by a single
day of data. To determine the correlation hyperparameters
{b1,1, . . . , bd,d} data reflecting the correlations must be pro-
vided. For the given case study, the minimal training period
reflecting this is given by a dataset of five days.

For the given approach, hyperparameters σn present in (2)
reflect the input sensor noise level. As part of the GP, these
hyperparameters can be trained on the provided dataset. Thus,
the sensor accuracy does not have to be individually consid-
ered but is determined from the training dataset.

1) Temperature Profiles: Room-temperature profiles do not
vary extensively during the day. This type of smooth variation
can be captured by the rational quadratic kernel RQ, given by

KRQ(t, t ′) =

(
1 +

|t − t ′
|

2αl2

)−α

, (10)

with α, l ∈ R+. It should be noted that the prediction scheme
described in Fig. 2 is a consequence of this choice as (10)
is defined by an Euclidean distance. An operation like this
implies the model staying in the vicinity of the training set.
In addition, a scaling by a constant factor is applied to ensure
stable scaling during operation.

2) CO2 Profiles: Contrary to temperature profiles, CO2 pro-
files tend to vary more rapidly. Thus, a kernel with less amount
of smoothness, that is, a Matérn kernel

KM5/2(t, t ′) =

(
1 +

√
5|t − t ′

|

l
+

5(t − t ′)2

3l2

)

· exp

(
−

√
5|t − t ′

|

l

)
, (11)
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with length-scale hyperparameter l ∈ R+ has to be
selected.

C. Nonzero Mean Functions for DTs

Within general Gaussian process applications, a nonzero
mean function might be used to incorporate prior knowledge
about the functions to be described [25]. This might be realized
by a parametric model of the function if detailed knowledge
about the signal characteristics is available. In the given data-
driven application, an analytic function cannot be given as
temperature and CO2 signal characteristics are determined by
nonmeasured quantities like occupancy within the room or
solar radiation. However, it turns out to be sufficient to select
the trivial approach (6) with S = 1 as a prior mean function,
that is,

µprior(t) = TRIV. (12)

Contrary to the zero-mean approach previously discussed, this
type of model is trained on the correlation between deviation
from the trivial expectation instead of the correlation across
signals themselves. As will be experimentally verified in
Section V, this allows to rely on only a single reference sensor
as input for the DT. Moreover, this enables a long-term appli-
cation without the need for dedicated retraining strategies. This
is because external changes, like for example seasonality, are
affecting all measurements as well as pseudo-measurements
present likewise. Thus, the proposed model trained on corre-
lations of deviations is not significantly affected by changing
seasons.

It should be noted that in the case of a single-input reference
signal, the multioutput kernel (9) reduces to

KICM(T , T ′) = B[2]
⊗ Kbasis(T , T ′), (13)

called the intrinsic coregionalization model (ICM).

IV. CASE STUDY

The validity of the proposed approach is evaluated in a case
study based on data collected from a real-life office building.
The building is part of a set of facilities of Forschungszentrum
Jülich GmbH that were equipped with additional measure-
ment and automation capabilities in the scope of the living
lab energy campus (LLEC) initiative [12]. These serve as
a test-bed for the application and evaluation of advanced
building monitoring and control strategies [27].

For this case study, we select a multipurpose room that is
used as both a student laboratory and meeting room, displayed
in Fig. 3. The room is furnished with multiple workstations and
has three glass facades oriented in SE, SW, and NW directions.
All three facades can be fully shaded through manual blinds
operation via a wall-mounted control panel [human machine
interface (HMI)].

There are three air-temperature signals available for the
selected room: 1) one permanent measurement integrated into
the HMI, which is located next to the main entrance door
at a height of 1.60 m providing data on change of value
(COV) with an accuracy of ±0.5 K and bound to a resolution
of 0.1 K; 2) one additional permanent measurement as part

Fig. 3. Measurement setup for obtaining temperature data at different
locations inside the test room.

of a ceiling-mounted presence-multisensor (PM) providing
data on COV with an accuracy of ±0.2 K and bound to a
resolution of 0.1 K; and 3) a temporary measurement via an
on-desk personal IAQ sensor providing data every 5–15 min
(depending on the dynamics of the measured values) with an
accuracy of ±0.5 K and bound to a resolution of 0.2 K.

The temperature measurement from the HMI constitutes a
TC parameter that is quite commonly available in modern
buildings nowadays [12]. This is due to the use of the room air
temperature information to control the heating system based
on a temperature set-point provided by the occupants. As the
HMI is anyway required to obtain these set points, integrating
a temperature measurement represents the industry’s best
practice. However, the location of the HMI does not allow for
a measurement close to the occupants, which leads to a mis-
match between the measurable and the occupant-experienced
TC. An increasingly common second sensor at a different
location, in this case, the ceiling-mounted PM sensor, can be
used to better approximate the real room air temperature. The
third temperature signal from the desk-mounted IAQ sensor is
the best approximation of the real temperature experienced by
a person in the room.

The on-desk sensor (IAQ) and the PM not only measure the
air temperature but also the CO2 concentration. In addition to
these two CO2 signals, a third one is available through a sensor
that is also mounted on a desk [multi-sensor (MS)] but at a
comparably remote position in a presumably better-ventilated
part of the room. We choose this spot to achieve a mea-
surement comparable to that of a conventional wall-mounted
sensor while still being able to capture the important dynamics
inside the occupied area of the room. Regarding the sensors’
properties in terms of CO2, both IAQ and MS have an accuracy
of ±125 ppm. The accuracy of the PM sensor is slightly higher
in comparison at ±90 ppm. All three devices have a resolution
of 10 ppm and report new CO2 values with the same sampling
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TABLE I
SUMMARY OF IMPORTANT SPECIFICATIONS OF THE DEVICES USED IN THE CASE STUDY

rate as for the temperature observations. We summarize sensor
specifications in Table I.

Measurements from the four sensors are collected using a
cloud-based infrastructure [12], [28]. Each sensor is connected
to a programmable logic controller (PLC) via a KNX field-
bus network. The IAQ and MS sensors are wireless sensors
that use the radio-based EnOcean protocol and connect to
the KNX bus through a dedicated, bidirectional EnOcean-to-
KNX gateway. The other two sensors (HMI and PM) are
directly connected to the KNX bus. The collected device
data is transferred from the PLC into a time-series database.
This is done via a data transfer script, which fetches the
data from the PLC using the ADS protocol. The fetching
mechanism is driven by changes in the data on the PLC to
achieve low latencies in data transmission. Finally, the sensor
data is retrieved from the database, which is deployed in a
cloud environment, using structured query language (SQL)
statements.

The dataset used in this case study contains five full days
of measurements for training, 14 days for the short-term, and
seven months for the long-term evaluation. Temperature and
CO2 data from the four sensors HMI, PM, IAQ, and MS, with
varying temporal resolutions ranging from seconds to hours,
was obtained from 01 June to 31 December 2023.

V. RESULTS

The evaluation of the overall performance and the com-
parison to alternative algorithms is given with respect to the
normalized root mean squared error (NRMSE), that is,

NRMSE(SDT, SIAQ) =
1

S̄IAQ

√√√√ 1
N

N∑
j=1

(SIAQ, j − SDT, j )2, (14)

with N true measurements SIAQ and, correspondingly, pre-
dicted pseudo-measurements SDT. S̄IAQ denotes the arithmetic
signals average for this specific period. It should be noted
that (14) provides a relative error per day. That is, j runs
over N time instances for each individual day. Long-term
evaluations are performed per month, where the arithmetic
mean over daily relative errors are computed.

A. Multiinput Temperature DTs

Developed in Section III, the proposed Corr-GPIAQ
HMI,PM is

calculated according to Figs. 1 and 2 and is defined by (9)

with q = 2 using (10), that is,

DTIAQ
HMI,PM = GP

0,
∑

q=HMI,PM

B[3]

q ⊗ KRQ(T , T ′)

. (15)

1) Detailed Short-Term Analysis: In Fig. 4, the compar-
ison of the proposed Corr-GPIAQ

HMI,PM DT (blue) with the

TRIVIAQ
HMI,PM (orange) and VARMAIAQ

HMI,PM (green) model eval-
uated by NRMSE [%] per day can be seen. The proposed
approach outperforms the given alternatives, for the entire
evaluation set except for day 7. This can be explained via
a distinct correlation on that specific day, which can be
quantified, for example, in terms of the Pearson correlation
coefficient [29], given by

r IAQ
i =

∑
j

(
Ti j − T̄ i

)
(TIAQ j

− T̄ IAQ)√∑
j (Ti j − T̄ i )2

√∑
j (TIAQ j

− T̄ IAQ)2
, (16)

where Ti ∈ {THMI, TPM}, j runs over times instances during a
day and bars denote the arithmetic average. The calculated
r IAQ

i for the given time-series are displayed in Fig. 5(a).
It can be seen that on day seven, a lack of correlation
between the IAQ measurements and both the HMI and PM
measurements is evident. In line with the given theoretical
construction of the Corr-GP in terms of separable kernels in
Section III-B, this result indicates a strong connection between
the proposed Corr-GP approach and the level of correlation
across the considered signals. Considering Fig. 5(b), this can
be explained by a transition in the shading position on day 7
at 10:24 am, in which the previously fully opened blinds are
completely closed by the user. Solar radiation that is transmit-
ted into the room heats up the room surfaces and, if hitting a
sensor, results in an increased measured temperature. Hence,
changes in shading intensity affect the correlation between
the temperature sensors. For a prospective field application
of Corr-GPs, this relation has to be investigated in detail and
corresponding dedicated strategies have to be developed. As an
example, the information on the blinds could be included in
the DT.

2) Long-Term Statistical Analysis: As an additional test of
the proposed approach, we give a long-term evaluation. The
daily based NRMSEs are monthly aggregated and displayed
in Table II.
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Fig. 4. Daily NRMSE-based comparison among the considered methods.

Fig. 5. (a) Pearson correlation coefficient of IAQ and HMI, PM measurements
per day. (b) Blinds position.

TABLE II
NRMSE PER MONTH [%] OF LONG-TERM EVALUATION

OF MULTIINPUT TEMPERATURE DT

It can be seen that the proposed Corr-GPIAQ
HMI,PM yields good

results for the first months with consecutive increasing errors
afterward. This can be rooted in seasonality effects and thus,
a change in signal correlation. Consequently, for this type of
model (15), dedicated retraining would be required, that is,
additional measurements have to be performed limiting the
usage of the DT model (15). It should be noted that although
the performance of the trivial approach gets slightly worse over
time, the NRMSE does not increase as much as the Corr-GP
model. Before presenting a possible solution for the pro-
posed Corr-GP approach in terms of the prior-mean function,
we give more details on the individual signal’s contribution in
Section V-A3.

3) Model Selection, Limits, and Analysis of Corr-GP: To
evaluate a possible model extension, consider single-input
models first. In Fig. 6, the NRMSE of the continuous
single-input models Corr-GPIAQ

PM and Corr-GPIAQ
HMI with zero

prior-mean function, that is,

GP
(
0, B[3]

q ⊗ KRQ(T , T ′)
)
, (17)

Fig. 6. NRMSE of single-input zero-mean Corr-GP and single-input TRIV.

with q = HMI or PM and TRIVIAQ
PM and TRIVIAQ

HMI are dis-
played. From Fig. 6, it can be deduced that the single-input
GP architectures perform worse than the single-input trivial
algorithm when evaluated for 14 days in June. In contrast,
when having multiple measurement devices available, the
results shown in Fig. 4 indicate that Corr-GPs are superior with
a combination of several reference signals. This is because the
correlations modeled by (8) are trainable hyperparameters of
the proposed Corr-GP.

In addition to the NRMSE, intraday performance and indi-
vidual outliers play a significant role in all follow-up processes
based on pseudo-measurements, for example, building opera-
tions. More precisely, the intraday prediction accuracy and the
correct estimation of the current system state directly affect the
controller’s ability to maximize individual TC and save energy.
In Fig. 7, the normalized maximum deviation

1Tmax =
1

T̄ IAQ
max

i=1,...,M j

{|TIAQ,i − TDT,i |}, (18)

is displayed in addition to the NRMSE. The max-operator
determines the maximum deviation between the true TIAQ and
the predicted temperature TDT for a single day normalized by
the daily average T̄ IAQ.

As can be seen in Fig. 7, a connection between NRMSE
(blue) and 1Tmax (orange) is evident. More precisely, we can
deduce that mostly if 1Tmax rises, so does the NRMSE.
In other words, the performance of the proposed approach is
primarily driven by short-term deviations. An example of this
can be seen in Fig. 8, where two particular days are depicted.

Fig. 8(a) displays an example that gives a comparably high
NRMSE of 2.46% and Fig. 8(b) shows a well-performing day
with an NRMSE of 0.93%. In Fig. 8(a), it can be seen that the
dynamics of the true IAQ measurements (blue crosses) clearly
deviate from the two input reference sensors HMI (red) and
PM (orange) after 4:30 pm. The local rise in temperature can
be explained by an increase in the solar irradiation hitting the
IAQ sensor but not the permanent ones. The filled gray area
in Fig. 8 shows the measured indoor luminosity for the two
days, indicating that: 1) high luminosity (i.e., solar irradiation)
generally leads to high air temperatures and 2) solely the
IAQ sensor reacts to the significant changes in measured
luminosity. Due to a low solar elevation angle in the afternoon,
the IAQ sensor, which is mounted at a lower height, is hit by
incoming solar radiation increasing the measured temperature.
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Fig. 7. Normalized maximum deviation 1Tmax and NRMSE.

Fig. 8. Reference measurements, IAQ measurements, the predicted Corr-GP
DT, and the luminosity for (a) day 4 and (b) day 8 are given.

However, the two permanent sensors which are mounted at
higher heights are not exposed and, therefore, do not report a
temperature increase. As this information is not provided to
the DT Corr-GPIAQ

HMI,PM by the reference signals, it cannot be
reproduced by the proposed approach.

B. Temperature Single-Input DT

Summarizing the discussion in Section V-A, the Corr-GP
approach is superior to the given alternatives regarding the
incorporation of multiple inputs but remains sensitive to bro-
ken correlations. In the remaining part of this work, we solve
the latter issue as periodical retraining would limit the appli-
cation in practical settings. As the incorporation of additional
measurement signals is out of the scope of this work, we leave
a dedicated analysis for future work.

The key observation from the previous discussion allowing
us to extend the given approach is the good performance of the
trivial alternative. More precisely, the trivial method TRIV can
be included in the Corr-GP in terms of a prior mean function.
It should be noted that in the given application it is not possible
to give an analytic expression for the prior mean function.
Thus, we propose

DTIAQ
HMI = GP

(
TRIVIAQ

HMI, B[2]

HMI ⊗ KRQ(T , T ′)
)
. (19)

The results for model (19) in terms of a long-term evaluation
are displayed in Table III. It should be noted that only results

TABLE III
NRMSE PER MONTH [%] OF LONG-TERM EVALUATION

OF THE SINGLE-INPUT TEMPERATURE DT

for the model with HMI input are explicitly given due to better
performance compared to the PM sensor as input.

In Table III, it can be seen that the proposed DT model (19)
outperforms the given alternatives and provides a sufficient
prediction capability. It should be noted that the independent
accuracy of the proposed model regarding seasonalities is a
result of the given analysis as no seasonal pattern can be
observed for the results of Corr-GPIAQ

HMI in Table III. However,
as discussed in Section III-C, this type of independence can
be understood by construction. Contrary to the zero-mean
approach (15) and (17), the proposed approach (19) is not
trained on correlations across signals. Instead, it captures the
deviations from an expected mean provided by the trivial
approach. As seasonal changes affect all instances simultane-
ously, the proposed extension by Triv mean functions is also
more resistant regarding changing seasonalities.

C. CO2 DTs

For the second case study concerning CO2 pseudo-
measurements, both proposed models are tested and evaluated,
while the single-input model is tested with both possible
reference sensors PM and MS, individually. Summarizing the
proposed approaches, we have

DTIAQ
MS,PM = GP

(
0,

∑
q=MS,PM

B[3]

q ⊗ KM5/2(T , T ′)
)

(20)

DTIAQ
PM = GP

(
TRIVIAQ

PM , B[2]

PM ⊗ KM5/2(T , T ′)
)

(21)

DTIAQ
MS = GP

(
TRIVIAQ

MS , B[2]

MS ⊗ KM5/2(T , T ′)
)
. (22)

The results for both proposed approaches as well as the given
alternatives are given in Table IV. From that, it can be seen
that only the Corr-GPIAQ

MS outperforms the given alternative
algorithms. As exemplarily shown in Fig. 9, this is rooted
in the fact that the MS sensor yield measurements sufficiently
correlated to the desired IAQ measurements. In contrast, the
PM sensor displays a lower amount of correlation as evident
from Fig. 9. Thus, both models including readings from PM
display a worse performance.

D. Applications of Building DTs

We conclude this section with a comparison of the proposed
approaches, discuss a practical implementation, and address
limitations and future research directions.

1) Comparison: Regarding temperature pseudo-
measurements, both proposed approaches outperform
the given alternatives subjected to an unchanged seasonality.
In the case of changing seasonality, the long-term results
of Sections V-B and V-C indicate that the nonzero mean
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TABLE IV
NRMSE PER MONTH [%] OF CO2 DTS

Fig. 9. Exemplary CO2 data of a random day (Dec 2).

single-input model Corr-GPIAQ
MS is applicable without

retraining. Thus, long-term pseudo-measurements can be
provided by Corr-GPIAQ

MS . Comparison of Tables II and III
shows a possible reduction from two reference sensors
to one reference sensor if the GP approach with nonzero
mean function Corr-GPIAQ

MS is considered. With application
to CO2 pseudo-measurements, only the nonzero means
single-input with the MS as a reference provides sufficient
results.

Concerning the class of vector autoregressive approaches,
like VARMA, it should be noted that they require nonseasonal
data as they assume an underlying stationary stochastic pro-
cess. As this is not the case for the given application, the data
must be preprocessed to be usable by VARMA models. In the
given case study, a trend-stationarity is not applicable as the
test was aborted after ten evaluation days at most. This is due
to a changing seasonal behavior during operation, which is not
assignable by the training set. A common method is to con-
sider the difference between neighboring data points. However,
this is not applicable as there is no initial point to reverse this
transformation to the actual signals. In contrast, the proposed
Corr-GP approaches do not require any preprocessing.

In the given case study, small training datasets are con-
sidered. Although more data could be collected in principle,
in practical applications, additional measurements should be
limited to reduce hardware costs, implementation effort, and
user disturbances to a minimum. In the presented case study

TABLE V
NUMBER OF AVAILABLE TRAINING DATA POINTS PER SENSOR

with five training days, the number of available training
data points is summarized in Table V. Thus, neural network
architectures are not applicable due to the small amount of
training data [30].

2) Implementation: The proposed approach is implemented
in Python. A minimal set of preprocessing steps is applied,
where the daytimes of each day are selected from the
individual signals, and NaN values are filtered. The proposed
approach is implemented using GPy [31]. For the given
application, hyperparameter specifications are given by GPy’s
default settings. For the continuous update of the DT during
offline operation, signals are retrieved from a database
(CrateDB [32]).

The measurements obtained through the various sensors are
collected and standardized at a PLC (cf. Table I). Via an
edge-to-cloud adapter, based on PyADS [33] and the Eclipse
Paho MQTT python client [34], and implemented in Python,
we retrieve the standardized data from the PLC and forward
it to an Eclipse Mosquitto MQTT broker [35]. From there,
the data is written into the database via a script based on the
CrateDB Python client library [36]. All scripts, the MQTT
broker, and the database are deployed using Docker [37] in
our self-hosted cloud environment built on OpenStack [38].
More details on the data collection infrastructure can be found
in [28].

To apply the GP in an online manner, that is, for generat-
ing pseudo-measurements live, we, additionally, developed an
MQTT interface that allows us to feed the GP directly with
live data from the sensors.

3) Limits: A key aspect of the proposed approach is the
sensitivity to correlations among signals. However, this might
also be a limiting fact in practical application. For example,
as described in Fig. 8, only one of the sensors might be
affected by individual effects like shading. Turning the roles
of the considered signals around, that is, using the IAQ as
a reference sensor predicting HMI or PM in Fig. 8 would
display a sensitive response to the single-sensor effect. Thus,
care must be taken in sensor layout omitting single-sensor
effects in reference sensors.

Depending on the type of included sensors and signals,
sensor drifting can also not be neglected. As the proposed
approach is trained on a specific correlation, retraining can-
not be avoided in this case. Practically, this implies the
installation of the sensor conducting training data, at which
the pseudo-measurements should be performed. In general,
retraining is always mandatory in cases, in which the cor-
relations between the considered reference measurements and
pseudo-measurements change.

In this work, we show that the proposed approach can
be updated with respect to new, possibly sparsely sampled
COV measurements. However, if the reference sensor fails to
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provide any data, also the DT cannot be updated such that no
pseudo-measurements can be provided.

4) Outlook: In future works, the demonstrated DTs could be
applied to rooms and buildings having different characteristics.
In particular, transfer learning could be investigated to reduce
costs and implementation of additional measurement devices
for training. It is expected that the benefits of the approach are
larger in spaces where the distance and height between the
remotely mounted sensors and the occupied zone are large,
which could be examined as well.

As discussed in the last section, the prediction accuracy of
the pseudo-measurements was demonstrated to be sensitive
to various shading variables, like the position of the blinds
and indoor illuminance. Adding such additional information
by dedicated measurements could be used to feed the Corr-GP
to improve the overall performance.

Although the proposed approach is trainable on small
datasets which practically benefits a quick application omit-
ting long periods of collecting training data, including data
obtained during long-term application might be beneficial.
In particular, the analysis of changes in a particular signal
as well as across multiple reference signals might be used and
could render retraining unnecessary.

VI. CONCLUSION

In this work, a DT architecture providing temperature and
CO2 pseudo-measurements realized by two types of Corr-GPs
is proposed. In particular, a multiinput zero-mean as well as a
single-input nonzero-mean Corr-GP is proposed and analyzed.
It is shown that the proposed Corr-GP DT outperforms alter-
native approaches in predicting a close-to-person temperature
and CO2 pseudo-measurement based on remotely mounted
measurement devices.

For temperature pseudo-measurements, both types of
proposed Corr-GP DTs yield sufficient realizations in case
of an unchanged seasonality. Moreover, for temperature
pseudo-measurements, we show that in this case, Corr-GPs
are of advantage when dealing with multiple reference
measurements. Additionally, we provide results for single-
input Corr-GP with a nonzero mean function, indicating
a reliable long-term application. In particular, a dedicated
retraining of the given DT can be avoided. For the
CO2 pseudo-measurements, only the single-input formulation
yields sufficient results and outperforms the given alternatives.
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