001038176 001__ 1038176
001038176 005__ 20250310131248.0
001038176 0247_ $$2doi$$a10.1016/j.media.2025.103455
001038176 0247_ $$2ISSN$$a1361-8415
001038176 0247_ $$2ISSN$$a1361-8431
001038176 0247_ $$2ISSN$$a1361-8423
001038176 0247_ $$2pmid$$a39826435
001038176 0247_ $$2WOS$$aWOS:001405382500001
001038176 037__ $$aFZJ-2025-01223
001038176 082__ $$a610
001038176 1001_ $$0P:(DE-HGF)0$$aChang, Xuebin$$b0
001038176 245__ $$aMulti-center brain age prediction via dual-modality fusion convolutional network
001038176 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001038176 3367_ $$2DRIVER$$aarticle
001038176 3367_ $$2DataCite$$aOutput Types/Journal article
001038176 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739262840_30399
001038176 3367_ $$2BibTeX$$aARTICLE
001038176 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038176 3367_ $$00$$2EndNote$$aJournal Article
001038176 520__ $$aAccurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets.
001038176 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001038176 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001038176 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038176 7001_ $$0P:(DE-HGF)0$$aJia, Xiaoyan$$b1
001038176 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b2$$ufzj
001038176 7001_ $$0P:(DE-Juel1)190904$$aDong, Debo$$b3$$ufzj
001038176 7001_ $$0P:(DE-HGF)0$$aZeng, Wei$$b4$$eCorresponding author
001038176 773__ $$0PERI:(DE-600)1497450-2$$a10.1016/j.media.2025.103455$$gVol. 101, p. 103455 -$$p103455 -$$tMedical image analysis$$v101$$x1361-8415$$y2025
001038176 909CO $$ooai:juser.fz-juelich.de:1038176$$pVDB
001038176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
001038176 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b2
001038176 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190904$$aForschungszentrum Jülich$$b3$$kFZJ
001038176 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Information Science, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China Corresponding author. wz@xjtu.edu.cn$$b4
001038176 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001038176 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001038176 9141_ $$y2025
001038176 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2022$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001038176 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bMED IMAGE ANAL : 2022$$d2025-01-02
001038176 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001038176 980__ $$ajournal
001038176 980__ $$aVDB
001038176 980__ $$aI:(DE-Juel1)INM-7-20090406
001038176 980__ $$aUNRESTRICTED