Home > Publications database > Multi-center brain age prediction via dual-modality fusion convolutional network > print |
001 | 1038176 | ||
005 | 20250310131248.0 | ||
024 | 7 | _ | |a 10.1016/j.media.2025.103455 |2 doi |
024 | 7 | _ | |a 1361-8415 |2 ISSN |
024 | 7 | _ | |a 1361-8431 |2 ISSN |
024 | 7 | _ | |a 1361-8423 |2 ISSN |
024 | 7 | _ | |a 39826435 |2 pmid |
024 | 7 | _ | |a WOS:001405382500001 |2 WOS |
037 | _ | _ | |a FZJ-2025-01223 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Chang, Xuebin |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Multi-center brain age prediction via dual-modality fusion convolutional network |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1739262840_30399 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain age prediction models to multi-center datasets, particularly those with small-sample sizes, remains a significant challenge that is yet to be addressed. To this end, we propose a multi-center data correction method, which employs a domain adaptation correction strategy with Wasserstein distance of optimal transport, along with maximum mean discrepancy to improve the generalizability of brain-age prediction models on small-sample datasets. Additionally, most of the existing brain age models based on neuroimage identify the task of predicting brain age as a regression or classification problem, which may affect the accuracy of the prediction. Therefore, we propose a brain dual-modality fused convolutional neural network model (BrainDCN) for brain age prediction, and optimize this model by introducing a joint loss function of mean absolute error and cross-entropy, which identifies the prediction of brain age as both a regression and classification task. Furthermore, to highlight age-related features, we construct weighting matrices and vectors from a single-center training set and apply them to multi-center datasets to weight important features. We validate the BrainDCN model on the CamCAN dataset and achieve the lowest average absolute error compared to state-of-the-art models, demonstrating its superiority. Notably, the joint loss function and weighted features can further improve the prediction accuracy. More importantly, our proposed multi-center correction method is tested on four neuroimaging datasets and achieves the lowest average absolute error compared to widely used correction methods, highlighting the superior performance of the method in cross-center data integration and analysis. Furthermore, the application to multi-center schizophrenia data shows a mean accelerated aging compared to normal controls. Thus, this research establishes a pivotal methodological foundation for multi-center brain age prediction studies, exhibiting considerable applicability in clinical contexts, which are predominantly characterized by small-sample datasets. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jia, Xiaoyan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 2 |u fzj |
700 | 1 | _ | |a Dong, Debo |0 P:(DE-Juel1)190904 |b 3 |u fzj |
700 | 1 | _ | |a Zeng, Wei |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.media.2025.103455 |g Vol. 101, p. 103455 - |0 PERI:(DE-600)1497450-2 |p 103455 - |t Medical image analysis |v 101 |y 2025 |x 1361-8415 |
909 | C | O | |o oai:juser.fz-juelich.de:1038176 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)190904 |
910 | 1 | _ | |a Department of Information Science, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China Corresponding author. wz@xjtu.edu.cn |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED IMAGE ANAL : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b MED IMAGE ANAL : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|