001038193 001__ 1038193
001038193 005__ 20250203103318.0
001038193 0247_ $$2doi$$a10.1515/9783111341996-023
001038193 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01232
001038193 037__ $$aFZJ-2025-01232
001038193 1001_ $$0P:(DE-HGF)0$$aMau, Jochen$$b0$$eEditor
001038193 245__ $$aA magnetic resonance spectroscopy approach to quantitatively measure GABA and phosphorus level changes in the primary motor cortex elicited by transcranial direct current stimulation
001038193 260__ $$aBerlin/ Boston$$bDe Gruyter$$c2024
001038193 29510 $$aBIOKYBERNETIKA / Mau, Jochen (Editor) ; : De Gruyter, 2024, ; ISBN: ; doi:10.1515/9783111341996
001038193 300__ $$a427-439
001038193 3367_ $$2ORCID$$aBOOK_CHAPTER
001038193 3367_ $$07$$2EndNote$$aBook Section
001038193 3367_ $$2DRIVER$$abookPart
001038193 3367_ $$2BibTeX$$aINBOOK
001038193 3367_ $$2DataCite$$aOutput Types/Book chapter
001038193 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1738063255_6608
001038193 520__ $$aAbstractSeveral studies have presented molecular and neurophysiological evidence establishing a connection between synaptic plasticity, specific cognitive functions, energy metabolism, and metabolic syndrome in certain brain areas. As altered plasticity and energy regulation have been associated with neuropsychiatric disorders, studying the neurochemical mechanisms behind neuronal plasticity and energy metabolism simultaneously may support groundbreaking neuroscientific and therapeutic interventions. A favorable approach for investigating neuronal plasticity and energy metabolism is with the use of transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that enables the modulation of neuronal excitability and energy in humans. The modulation in excitability and energy is likely mediated by the γ-aminobutyric acid (GABA), which is a potent inhibitor, and high-energy phosphates. Another well-established, non-invasive technique allowing the in vivo examination of the human brain and its functions is magnetic resonance spectroscopy (MRS). MRS is frequently used to quantify the concentration changes of various metabolites at the cellular level in the brain. Although proton-based measurements continue to be the standard, advancements in MRS methodologies and MR hardware have led to the ability to measure variations in neurotransmitters and high-energy phosphates using both proton and phosphorus MRS simultaneously. Owing to the complementary features of both tDCS and MRS, the simultaneous acquisition of data using both modalities offers a promising approach for gathering paired information concerning adaptive synthesis and energy consumption in both healthy and pathologically altered brains. This technique enables access to profound insights into the regulation of brain functions and to model the biochemical plasticity of the motor cortex.
001038193 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001038193 588__ $$aDataset connected to CrossRef Book
001038193 7001_ $$0P:(DE-HGF)0$$aMukhin, Sergey$$b1$$eEditor
001038193 7001_ $$0P:(DE-HGF)0$$aWang, Guanyu$$b2$$eEditor
001038193 7001_ $$0P:(DE-HGF)0$$aXu, Shuhua$$b3$$eEditor
001038193 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b4$$ufzj
001038193 7001_ $$0P:(DE-HGF)0$$aJayeshkumar Patel, Harshal$$b5
001038193 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b6$$ufzj
001038193 7001_ $$0P:(DE-Juel1)142495$$aBinkofski, Ferdinand$$b7$$ufzj
001038193 773__ $$a10.1515/9783111341996-023
001038193 8564_ $$uhttps://juser.fz-juelich.de/record/1038193/files/Postprint.pdf$$yOpenAccess
001038193 909CO $$ooai:juser.fz-juelich.de:1038193$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b4$$kFZJ
001038193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
001038193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142495$$aForschungszentrum Jülich$$b7$$kFZJ
001038193 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001038193 9141_ $$y2024
001038193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038193 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
001038193 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
001038193 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
001038193 980__ $$acontb
001038193 980__ $$aVDB
001038193 980__ $$aUNRESTRICTED
001038193 980__ $$aI:(DE-Juel1)INM-4-20090406
001038193 980__ $$aI:(DE-Juel1)INM-11-20170113
001038193 980__ $$aI:(DE-Juel1)VDB1046
001038193 9801_ $$aFullTexts