001038244 001__ 1038244
001038244 005__ 20250310131247.0
001038244 0247_ $$2doi$$a10.1021/acs.langmuir.4c02952
001038244 0247_ $$2ISSN$$a0743-7463
001038244 0247_ $$2ISSN$$a1520-5827
001038244 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01280
001038244 0247_ $$2pmid$$a39395149
001038244 0247_ $$2WOS$$aWOS:001337668000001
001038244 037__ $$aFZJ-2025-01280
001038244 082__ $$a540
001038244 1001_ $$0P:(DE-HGF)0$$aNiebuur, Bart-Jan$$b0
001038244 245__ $$aPNIPAM Mesoglobules in Dependence on Pressure
001038244 260__ $$aWashington, DC$$bACS Publ.$$c2024
001038244 3367_ $$2DRIVER$$aarticle
001038244 3367_ $$2DataCite$$aOutput Types/Journal article
001038244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738850033_24194
001038244 3367_ $$2BibTeX$$aARTICLE
001038244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038244 3367_ $$00$$2EndNote$$aJournal Article
001038244 520__ $$aPoly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature Tcp. While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans. Using very small angle neutron scattering, we determined the size and water content of the mesoglobules in pressure scans at different temperatures above Tcp. We observe a distinct transition at pressures of 35–55 MPa with the transition pressure depending on temperature. While the transition is smooth at high temperatures, i.e., far away from the coexistence line, it is abrupt at low temperatures, i.e., close to the coexistence line. Hence, at high temperatures, the swelling of the mesoglobules dominates, whereas at low temperatures, the coalescence of mesoglobules prevails. Subsequently decreasing the pressure results in a gradual deswelling of the mesoglobules at high temperature. In contrast, at low temperatures, small and compact mesoglobules form, but the large aggregates persist. We conclude that, on the time scale of the experiment, the disintegration of the large swollen aggregates into small and compact mesoglobules is only partially possible. Erasing the history by cooling the sample at the maximum pressure into the one-phase state does not result in qualitative changes for the behavior with the only difference that Fewer mesoglobules are formed when the pressure is decreased again. The newly identified transition line separates the low-pressure from the high-pressure regime.
001038244 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001038244 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001038244 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038244 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001038244 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001038244 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
001038244 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b1
001038244 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b2
001038244 7001_ $$0P:(DE-HGF)0$$aMullapudi, Dharani$$b3
001038244 7001_ $$0P:(DE-HGF)0$$aNieth, Alec$$b4
001038244 7001_ $$0P:(DE-HGF)0$$aRende, Eric$$b5
001038244 7001_ $$00000-0003-0824-8572$$aSchulte, Alfons$$b6$$eCorresponding author
001038244 7001_ $$00000-0002-7098-3458$$aPapadakis, Christine M.$$b7$$eCorresponding author
001038244 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.4c02952$$gVol. 40, no. 42, p. 22314 - 22323$$n42$$p22314 - 22323$$tLangmuir$$v40$$x0743-7463$$y2024
001038244 8564_ $$uhttps://juser.fz-juelich.de/record/1038244/files/Open%20Access%20Document.pdf$$yOpenAccess
001038244 909CO $$ooai:juser.fz-juelich.de:1038244$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001038244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b1$$kFZJ
001038244 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001038244 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001038244 9141_ $$y2024
001038244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001038244 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038244 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038244 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2022$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001038244 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-27$$wger
001038244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001038244 920__ $$lyes
001038244 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
001038244 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001038244 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001038244 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
001038244 980__ $$ajournal
001038244 980__ $$aVDB
001038244 980__ $$aUNRESTRICTED
001038244 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001038244 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001038244 980__ $$aI:(DE-588b)4597118-3
001038244 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001038244 9801_ $$aFullTexts