001038246 001__ 1038246 001038246 005__ 20250811202235.0 001038246 0247_ $$2doi$$a10.1007/s11269-025-04097-7 001038246 0247_ $$2ISSN$$a0920-4741 001038246 0247_ $$2ISSN$$a1573-1650 001038246 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01282 001038246 0247_ $$2WOS$$aWOS:001397138500001 001038246 037__ $$aFZJ-2025-01282 001038246 041__ $$aEnglish 001038246 082__ $$a630 001038246 1001_ $$0P:(DE-Juel1)199090$$aAvila, Leandro$$b0$$eCorresponding author 001038246 245__ $$aEstimation of Monthly Water Table Depth Anomalies Based on the Integration of GRACE and ERA5-Land with Large-Scale Simulations Using Random Forest and LSTM Networks 001038246 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2025 001038246 3367_ $$2DRIVER$$aarticle 001038246 3367_ $$2DataCite$$aOutput Types/Journal article 001038246 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738132872_6367 001038246 3367_ $$2BibTeX$$aARTICLE 001038246 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001038246 3367_ $$00$$2EndNote$$aJournal Article 001038246 520__ $$aIncreasing pressure on groundwater resources, exacerbated by climate change, highlights the need to develop advanced methods for monitoring groundwater storage and levels. While numerical and physics-based models are widely used to analyze the spatial and temporal dynamics of groundwater levels, they require extensive input data and can be computationally expensive for high-resolution and large-scale simulations. In contrast, remote sensing products such as the Gravity Recovery and Climate Experiment (GRACE) provide global-scale information on total water storage anomalies. However, due to its coarse spatial resolution (0.25), GRACE data cannot be used directly to assess groundwater conditions at local and regional scales. In order to obtain local groundwater levels that can be quickly accessed by stakeholders to monitor and define appropriate groundwater management, this study implements a methodology based on data-driven models to estimate monthly water table depth anomalies (wtda), integrating simulations from the Terrestrial Systems Modeling Platform (TSMP) with GRACE and reanalysis ERA5-Land datasets. Considering the spatial resolution of current TSMP simulations (TSMP-G2A - 0.11 degrees), we tested and compared multiple Random Forest (RF) and LSTM networks at the pixel scale over the Seine River Basin, combining different hydrological and climatological variables with GRACE as input features. For each data-driven approach, we selected the model that best represents the temporal pattern of the wtda during the test period and compared the results with the original TSMP simulation, as well as in-situ groundwater observations. The results indicate that both RF and LSTM networks can well reproduce the temporal patterns of groundwater levels across the Seine Basin obtained by the TSMP simulations, with average Pearson correlations of 0.65 and average KGE of 0.6, respectively. A comparison with multiple groundwater wells allowed us to identify the regions where the applied models are more reliable for representing wtda over the Seine River Basin. In general, the proposed models show good agreement with in-situ observations, independent of the groundwater well depth. However, we found significant differences between observed and simulated water table depths in the downstream regions of the Seine River Basin, where coastal systems and the presence of karst in the chalk might influence groundwater levels and the performance of the adopted models, respectively. The proposed methods provide end users with an extremely lightweight reconstruction and prediction tool for wtda at the pixel level, including reliability estimates, which is easy to implement in an ad hoc fashion in any evaluation and groundwater management workflow. 001038246 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0 001038246 536__ $$0G:(EU-Grant)101059372$$aSTARS4Water - Supporting STakeholders for Adaptive, Resilient and Sustainable Water Management (101059372)$$c101059372$$fHORIZON-CL6-2021-CLIMATE-01$$x1 001038246 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001038246 7001_ $$0P:(DE-HGF)0$$ade Lavenne, Alban$$b1 001038246 7001_ $$0P:(DE-HGF)0$$aRamos, Maria-Helena$$b2 001038246 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b3$$ufzj 001038246 773__ $$0PERI:(DE-600)2016360-5$$a10.1007/s11269-025-04097-7$$p20$$tWater resources management$$v39$$x0920-4741$$y2025 001038246 8564_ $$uhttps://juser.fz-juelich.de/record/1038246/files/s11269-025-04097-7.pdf$$yOpenAccess 001038246 8767_ $$d2025-08-11$$eHybrid-OA$$jDEAL 001038246 909CO $$ooai:juser.fz-juelich.de:1038246$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery 001038246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199090$$aForschungszentrum Jülich$$b0$$kFZJ 001038246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b3$$kFZJ 001038246 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 001038246 9141_ $$y2025 001038246 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-30 001038246 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001038246 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-30$$wger 001038246 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001038246 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR MANAG : 2022$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-30 001038246 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-30$$wger 001038246 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30 001038246 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001038246 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001038246 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001038246 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 001038246 920__ $$lyes 001038246 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 001038246 9801_ $$aFullTexts 001038246 980__ $$ajournal 001038246 980__ $$aVDB 001038246 980__ $$aUNRESTRICTED 001038246 980__ $$aI:(DE-Juel1)IBG-3-20101118 001038246 980__ $$aAPC