001 | 1038334 | ||
005 | 20250207215605.0 | ||
024 | 7 | _ | |a 10.1038/S41467-024-52488-Y |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-01332 |2 datacite_doi |
024 | 7 | _ | |a 39294142 |2 pmid |
024 | 7 | _ | |a WOS:001315990000007 |2 WOS |
037 | _ | _ | |a FZJ-2025-01332 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Bhattacharya, Tinish |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Computing high-degree polynomial gradients in memory |
260 | _ | _ | |a [London] |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738911750_16276 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Specialized function gradient computing hardware could greatly improve the performance of state-of-the-art optimization algorithms. Prior work on such hardware, performed in the context of Ising Machines and related concepts, is limited to quadratic polynomials and not scalable to commonly used higher-order functions. Here, we propose an approach for massively parallel gradient calculations of high-degree polynomials, which is conducive to efficient mixed-signal in-memory computing circuit implementations and whose area scales proportionally with the product of the number of variables and terms in the function and, most importantly, independent of its degree. Two flavors of such an approach are proposed. The first is limited to binary-variable polynomials typical in combinatorial optimization problems, while the second type is broader at the cost of a more complex periphery. To validate the former approach, we experimentally demonstrated solving a small-scale third-order Boolean satisfiability problem based on integrated metal-oxide memristor crossbar circuits, with competitive heuristics algorithm. Simulation results for larger-scale, more practical problems show orders of magnitude improvements in area, speed and energy efficiency compared to the state-of-the-art. We discuss how our work could enable even higher-performance systems after co-designing algorithms to exploit massively parallel gradient computation. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Hutchinson, George H. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Pedretti, Giacomo |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sheng, Xia |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Ignowski, Jim |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Vaerenbergh, Thomas Van |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Beausoleil, Ray |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Strachan, John Paul |0 P:(DE-Juel1)188145 |b 7 |u fzj |
700 | 1 | _ | |a Strukov, Dmitri B. |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1038/S41467-024-52488-Y |g Vol. 15, no. 1, p. 8211 |0 PERI:(DE-600)2553671-0 |n 1 |p 8211 (2024) |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1038334/files/s41467-024-52488-y.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1038334 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)188145 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-14-20210412 |k PGI-14 |l Neuromorphic Compute Nodes |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-14-20210412 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|