
Article https://doi.org/10.1038/s41467-024-52488-y

Computing high-degree polynomial
gradients in memory

Tinish Bhattacharya 1 , George H. Hutchinson 1, Giacomo Pedretti 2,
Xia Sheng2, Jim Ignowski 3, Thomas Van Vaerenbergh 4, Ray Beausoleil4,
John Paul Strachan 5,6 & Dmitri B. Strukov 1

Specialized function gradient computing hardware could greatly improve the
performance of state-of-the-art optimization algorithms. Prior work on such
hardware, performed in the context of IsingMachines and related concepts, is
limited to quadratic polynomials and not scalable to commonly used higher-
order functions. Here, we propose an approach for massively parallel gradient
calculations of high-degree polynomials, which is conducive to efficient
mixed-signal in-memory computing circuit implementations and whose area
scales proportionally with the product of the number of variables and terms in
the function and, most importantly, independent of its degree. Two flavors of
such an approach are proposed. The first is limited to binary-variable poly-
nomials typical in combinatorial optimization problems,while the second type
is broader at the cost of a more complex periphery. To validate the former
approach, we experimentally demonstrated solving a small-scale third-order
Boolean satisfiability problem based on integrated metal-oxide memristor
crossbar circuits, with competitive heuristics algorithm. Simulation results for
larger-scale, more practical problems show orders of magnitude improve-
ments in area, speed and energy efficiency compared to the state-of-the-art.
Wediscuss howourwork could enable even higher-performance systems after
co-designing algorithms to exploit massively parallel gradient computation.

As the growing demand for computing processing power can be no
longer supported by semiconductor technology scaling, more focus is
now on developing application- and function-specific hardware
accelerators. Computing gradients is essential across many
applications1–4, such as training the weights in modern Deep Neural
Networks (DNN)5 or in physics-inspired computing paradigms,
including Ising machines (IMs)6,7 or closely related approaches with
Hopfield neural networks (HNNs)8 and Boltzmann machines (BMs)9.
For example, a continuous-time second-order HNN10 consists of a
recurrently connected network of pairwise symmetrically coupled
graded-response neurons (Supplementary Fig. S1). Neuron states are

continuously updated to seek the minimum of an associated scalar
energy function, i.e., a Hamiltonian function in the context of Ising
models10. For pair-wise couplings, the resulting energy function is
quadratic, and hence IMs/HNNs have been extensively applied to sol-
ving quadratic unconstrained binary optimization (QUBO) problems6

where the minimum of an arbitrary quadratic binary function is
sought.

The above neuron dynamics effectively depend on the partial
derivatives of the energy function with respect to the neuron values
(Supplementary Fig. S1). Therefore, to rapidly converge, the most
promising HNNs/IMs hardware implementations rely on massively

Received: 19 February 2024

Accepted: 11 September 2024

Check for updates

1Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA. 2Artificial Intelligence Research Lab,
Hewlett Packard Labs,Milpitas, CA,USA. 3Artificial Intelligence Research Lab, Hewlett Packard Labs, Fort Collins, CO, USA. 4Large Scale Integrated Photonics
Lab, Hewlett Packard Labs, Milpitas, CA, USA. 5Institute for Neuromorphic Compute Nodes (PGI-14), Peter Grunberg Institute, Forschungszentrum Juelich
GmbH, Juelich, Germany. 6Faculty of Electrical Engineering, RWTHAachenUniversity, Aachen, Germany. e-mail: tinish@ucsb.edu; strukov@ece.ucsb.edu

Nature Communications | (2024) 15:8211 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4591-6277
http://orcid.org/0000-0003-4591-6277
http://orcid.org/0000-0003-4591-6277
http://orcid.org/0000-0003-4591-6277
http://orcid.org/0000-0003-4591-6277
http://orcid.org/0009-0002-2150-987X
http://orcid.org/0009-0002-2150-987X
http://orcid.org/0009-0002-2150-987X
http://orcid.org/0009-0002-2150-987X
http://orcid.org/0009-0002-2150-987X
http://orcid.org/0000-0002-4501-8672
http://orcid.org/0000-0002-4501-8672
http://orcid.org/0000-0002-4501-8672
http://orcid.org/0000-0002-4501-8672
http://orcid.org/0000-0002-4501-8672
http://orcid.org/0000-0001-5091-3674
http://orcid.org/0000-0001-5091-3674
http://orcid.org/0000-0001-5091-3674
http://orcid.org/0000-0001-5091-3674
http://orcid.org/0000-0001-5091-3674
http://orcid.org/0000-0002-7301-8610
http://orcid.org/0000-0002-7301-8610
http://orcid.org/0000-0002-7301-8610
http://orcid.org/0000-0002-7301-8610
http://orcid.org/0000-0002-7301-8610
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-1382-3677
http://orcid.org/0000-0002-4526-4347
http://orcid.org/0000-0002-4526-4347
http://orcid.org/0000-0002-4526-4347
http://orcid.org/0000-0002-4526-4347
http://orcid.org/0000-0002-4526-4347
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52488-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52488-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52488-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52488-y&domain=pdf
mailto:tinish@ucsb.edu
mailto:strukov@ece.ucsb.edu
www.nature.com/naturecommunications

parallel computations of gradients6,11. Such hardware currently con-
stitutes the state-of-the-art in specialized gradient computing circuits.
Especially promising are crossbar-circuit implementations based on
analog memory devices12,13, most importantly very dense
memristors14–17, due to prospects of efficient in-memory computing18–21

and low footprint multi-bit implementations of the coupling weights.
Though there have been proposals of higher-(K)-order HNNs (see, e.g.,
Supplementary Fig. S2) and their variants22–28 that rely on computing
gradients of K-degree polynomials, an efficient hardware imple-
mentation is lacking, while the previous in-memory computing pro-
posals donot readily extend to largerK. For example, a straightforward
in-memory crossbar array implementation of K-order HNN with N
neurons (e.g., N variables in energy function) requires ~NK coupling
weights (Supplementary Fig. S2), i.e., hardly practical for larger N and/
or K.

Meanwhile, functions of higher K can represent increasingly
important and challenging problems. For example, polynomial
unconstrained binary optimization (PUBO) problems29 are described
by K-degree polynomials and naturally arise in protein folding and
other first-principle calculation methods30–33 and operations
research34–36. Notably, K grows linearly with the size of the molecular
system (molecular orbitals) in PUBO approaches for calculating elec-
tronic structure33. The well-known K–Boolean–satisfiability (K-SAT)
problem goes from polynomial to expected exponential runtime as K
increases from 2 to 337. While higher K > 3 can be mapped to the K = 3
cases, this requires a polynomial increase in the variables, potentially

increasing the runtime with increasing K. Interestingly, the original
Hopfield network with quadratic (K = 2) energy function has been
extended to much higher memory capacities by utilizing higher-order
(K > 2) energy functionals38. However, the operation of such networks,
as well as other artificial neural networks with high-order
synapses23,39,40, relies on efficient computations of higher-order poly-
nomial gradients.

A main contribution of this work is the development of an para-
digm for computing gradients of arbitrary-degree polynomial func-
tions in a massively parallel fashion. The proposed paradigm enables
efficient hardware that can immediately impact the above described
use cases and can be more broadly applied to accelerate gradient
computation of arbitrary functions when using Taylor expansion
approximation.

Parallel gradient computation
We expound upon binary-variable function (H) gradient computations
using ahighdegreepolynomial consistingof four variables (x) and four
terms (i.e., monomials) of varying degree, each with unique factor a
(Fig. 1a). Computing the gradient of such a function requires calcula-
tions of all its (pseudo) partial derivativesΔHxi ≡HxiΔxi, whereHxi is the
difference quotient41 ofHwith respect to xi andΔxi is the change in the
variable value (SupplementaryNote 1). In our approach, pseudo-partial
derivatives are decomposed into “make” and “break” components.
(This terminology is inspired by stochastic algorithms used for solving
SATproblems42,43.) Themake component of thepseudoderivativewith

Fig. 1 | Pseudo gradient computation for binary-variable functions.
a Considered 4th-degree polynomial function. Note that binary-variable high-order
polynomials are multilinear, i.e., the degree of any variable in a term is not more
than one. b–e Main idea of the proposed approach showing (b) crossbar memory
array implementation and (c–e) three in-memory computingoperations for parallel
gradient computation. c Sums of monomial variables are first computed in the
forward vector-by-matrix multiplication pass. These values are compared to
monomial orders in backward steps (d) and (e) to identify break and make type

monomials. Then, unit inputs, scaled by a monomial factor, are applied for the
identified break and make monomials in the backward vector-by-matrix multi-
plication. Finally, the results are appropriately gated at the periphery to compute
make and break terms of the pseudo-partial derivatives for each variable. The
partial derivatives in question correspond to a difference betweenmake and break
components, as shown in panels (a, d, e). Values shown in blue correspond to
specific variable assignments x1 = 1, x2 = 0, x3 = 1, x4 = 0.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 2

www.nature.com/naturecommunications

respect to a given variable represents the contribution from mono-
mials that would change their value from a zero to a non-zero one, i.e.,
corresponding a value, after flipping the variable state. Similarly, the
break component represents the contribution to the derivative from
monomials that were previously evaluated to non-zero value but
would become zero after changing the variable state. The difference
between the make and break values is related to the pseudo partial
derivative as ΔHxi = (makexi – breakxi) - see an example for a specific
variable assignment in Fig. 1a.We call themonomials that contribute to
making and break value summations as, correspondingly, make and
breakmonomials. Note that the sets of make and breakmonomials do
not overlap and depend on the current variable assignment and that
somemonomials might be of neither make nor break type. Our goal is
to design efficient hardware that can identify such make-break
monomials and then compute make-and-break values for each
variable.

Before discussing in-memory computing implementation, it is
convenient to visualize high-order polynomials as a bipartite graph
with variables and monomials representing two sets of vertices (Sup-
plementary Fig. S3). Such a graphmaps naturally to a crossbarmemory
array by assigning variables to one set of (say, vertical) crossbar wires
while monomials to another (horizontal) set of wires by setting the
array’s binary coupling weight to the “on” state, i.e., bji = 1, if the i-th
variable is present in a j-th monomial while setting the weight to the
“off” state (bji = 0) otherwise (Fig. 1b). All pseudo derivatives are
computed in parallel in three steps. First, in a “forward pass”, variable
values are applied to the crossbar array, and dot products

P
ibjixi

corresponding to the sums ofmonomial variables are calculated at the
monomial side of the crossbar array (Fig. 1c). This information is then
used to identify all make and breakmonomials (Fig. 1d, e). Specifically,
monomials whose variable sum is equal to their maximum value, i.e.,
monomial degreeKj, are breakmonomials,while thosewhose sumsare
one short of their degree (Kj−1) are mademonomials. For example, for
the specific variable assignment of the considered function, there are
two (2nd and 3rd degree) make monomials and one (1st degree) break
monomial (Fig. 1d, e).

The data flow via the crossbar circuit is reversed in the next two
steps. Unit inputs for the identified monomials, denoted by indicator
variable sj, and zero inputs otherwise, are applied at themonomial side
of the array to compute the number ofmonomials that each variable is
a member of at the variable side of the array. In a more general case
shown in Fig. 1d, in a “backward” make pass, unit inputs are scaled
according to themonomial factors so that the computed dot productsP

jbjiajsj , called make variable sums, correspond exactly to variables’
potential make values. “Potential” because computed values are only
relevant for currently zero variables, and only flipping those variables
can change a monomial value to a non-zero one. Therefore, the make
values are computed by multiplying the make variable sums at the
crossbar array periphery by the inverted value of a variable, i.e.,
�xi
P

jbjiajsj , thus making the result zero for all variables that are cur-
rently one. Similar operations are performed in a “backward” break
pass to compute break values, with the only difference that scaled unit
inputs are applied according to the identified break monomials,
denoted by indicator variable zj, and the final peripheral multiplication
is performed with normal variable values to compute the break values
xi
P

jbjiajzj (Fig. 1e). Supplementary Note 2 provides a more formal,
rigorous framework for the proposed in-memory massively parallel
computation of function pseudo gradient.

There are several important variations and extensions of the dis-
cussed approach. Monomial variable sums can be compared to fixed
values (0 and 1) to identify make-and-break monomials by applying
inverted values of variables in the forward pass (Supplementary
Fig. S4a–c). This allows for simplifying peripheral circuitry of the
backward passes by not requiring storing specific thresholds for each
monomial of Fig. 1d, e approach. An input scaling in the backward

passes can be implemented with more complex analog (multi-level)
memory devices to simplify the periphery further (Supplementary
Fig. S4d). Also, backward pass computations can be implemented on
separate crossbar arrays, which allows performing all three operations
in parallel in a pipelined design to increase computational through-
put (V).

More importantly for further discussion, the proposed approach
is also suitable after minor modifications for computing pseudo gra-
dients of Boolean logic functions expressed in conjunctive normal
form (CNF), thus allowing solving Constraint Satisfaction Problems
(CSPs) like SAT andMAXSAT, in native space without potentially time-
consuming conversion to an equivalent PUBO form (see Supplemen-
tary Note 3 for details on such conversion). CNF Boolean function
comprises conjunction (AND) of clauses, where a clause is a disjunc-
tion (OR) of literals, i.e., normal or complementary variables. The goal
of the K-SAT problem, known as NP-hard for K ≥ 3, is to find a variable
assignment that satisfies all clauses of the given CNF function, with up
to K literals per clause. Figure 2 shows details of all steps for parallel
computation of Boolean variable gain values. (A gain value is com-
monly used in the SAT community to describe the change in the
number of satisfied clauses after flipping a variable42,43. It is effectively
the negative of the pseudo partial derivative with respect to that
variable of an equivalent PUBO energy function.) In this case, clauses
aremapped to crossbar array rows, while literals (Fig. 2b), aremapped
to crossbar array columns. Forward (Fig. 2c) and backward (Fig. 2d, e)
operations are similar to those of the monomial approach with inver-
ted input variables (Supplementary Fig. S4a). Supplementary Note 4
provides a more formal framework for the proposed in-memory par-
allel computation of CNF pseudo gradients.

Finally, another variation (Supplementary Fig. S5) is due to the use
of crossbar arrays based on active, three-terminal memory devices,
such as 1T1R (Supplementary Fig. S1d) or floating gate (Supplementary
Fig. S1e) memory. An additional “gate” signal in such crossbar arrays
(Supplementary Fig. S5a) can be used to condition the dot-product
terms, which in turn allows for computing the make-and-break back-
ward passes using a single crossbar in a single step (instead of two as
shown in Supplementary Fig. S4e) for high-throughput gain compu-
tation of CNF-form Boolean functions - see Supplementary Note 5 for
details.

Experimental results
The key functionality of gain computation in CNF-form Boolean logic
functions was experimentally validated by solving a high-order com-
binatorial optimization problem (Figs. 3, 4). Specifically, the studied
optimization problem is custom-generated uniform random 3-SAT
with N = 14 variables and M = 64 clauses (Supplementary Fig. S7). The
problem parameters were chosen to maximize the use of hardware
resources and problem hardness44. The WalkSAT/SKC algorithm43, a
state-of-the-art local search heuristic, was implemented to solve a
3-SAT problem. Such an algorithm repeatedly flips variables using
information on their break values to converge to the solution. An
unsatisfied clause is first selected randomly out of all unsatisfied
clauses determined in a forward pass. Break values for all variables
within the selected clause are computed in parallel in the backward
pass. Then, a specific variable is flipped according to the algorithm
heuristics– seeMethods section formoredetails on the 3-SAT instance
generation and algorithm.

The experiments were performed on a prototype board that
features several 1T1RTaOxmemristor crossbar arrays, back-end-of-the-
line monolithically integrated with 180 nm CMOS circuits implement-
ing driving, sensing,memory programming, and input/output (analog-
to-digital conversion) functions (Supplementary Fig. S8). The forward
and backward operations were tested on M × 2N sub-arrays of two
crossbar arrays of a chip. Specifically, the conductance of on-state
(bji = 1) memristors was first tuned to Gon = 110 μS with 15% tuning

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 3

www.nature.com/naturecommunications

accuracy using the write-verify approach (Fig. 3c), while the con-
ductance of all off-state (bji =0) and outside of the utilized sub-array
memristors was set to as small as possible (< 10μS) values - see Sup-
plementary Fig. S9 for memristor conductance map and histogram. A
single iteration of the algorithm involves the application of digital
voltages Vxi ≡ xiV0 and V’xi ≡ �xiV0, with V0 = 0.2 V, encoding literals
l2i�1 � xi and l2i � �xi, correspondingly, to the word lines of the
crossbar array for the forward computation (Figs. 3b and 2c). The bit-
lines are tied to the ground so that the clause output currents Icj are
computed in memory according to Kirchhoff’s and Ohm’s laws and
correspond to dot-products I0

P2N
i= 1libji, where I0 ≡ V0Gon is a unit

current via on-state coupling weight while assuming negligible off-
state currents (Goff = 0), and bji are coupling binary weights between
literals li and j-th clause. In the backward computation step, the word
line voltages (Vcj) are applied to the second arrays’ rows corresponding
to the identifiedbreak clauses,while biasing other rows to zero. The bit
line currents of the second array are multiplied by the corresponding
literal values and normalized to the unit current I0 to compute
break values of variable xi (Figs. 3b and 2e), such that

breakxi = ðxiIxi + �xiI
0
xiÞ=I0 = l2i�1

P
jbj,2i�1zj + l2i

P
jbj,2izj . Here Ixi and I 0xi

denote the currents flowing in the bit lines corresponding to the
normal (l2i−1) and complimentary (l2i) literals of variable xi. Note that in
the performed experiment, the bit line currents are always converted
to the corresponding digital voltages using on-chip circuitry and
transmitted out of the chip via a serial peripheral interface so that
break clause checks and encode function (Fig. 3b) in the forward pass
and heuristics for selecting a variable in the backward pass are per-
formed on the personal computer (Fig. 3c).

The experimental demonstration was successful despite hard-
ware nonidealities such as inaccurate tuning of on-state coupling
weight conductances (Fig. 3c).Whilemeasured clause output currents
(Fig. 4a) in the forward pass and break output currents (Fig. 4b) in the
backward pass deviated from their ideal values, the margins between
adjacent clause currents in the forward pass were sufficient to clearly
distinguish break clauses – see, e.g., nonoverlapping histograms for 0,
1, and 2 clause current cases in Fig. 4a. The margins were slimmer for
backward pass (Fig. 4b), though still large enough for correct opera-
tion, in part due to the stochastic nature of the convergence (Fig. 4c).

Fig. 2 | Conjunctivenormal formgain computation. aConsidered4th-degreeCNF
Boolean function, i.e., 4-SAT problem. b–e The main idea of the gain computing
shows (b) crossbar memory array implementation and (c–e) three in-memory
computing operations. The approach is similar to the polynomial pseudo gradient
computation. Specifically, sums of clause literals are first computed similarly to the
inverted monomial approach (Supplementary Fig. S4a) in the forward vector-by-
matrix multiplication pass, as shown in panel (c). The sum values are compared to
clause orders in backward steps (d) and (e) to identify break andmake type clauses.
Unit inputs, that can be scaled by clause factor when clauses in CNF are weighted

(e.g., used in weighted SAT problems), are applied for the identified break and
make clauses in the backward vector-by-matrix multiplication. The results are then
properly gated at the periphery to compute make and break values for each vari-
able. The corresponding variable gains (i.e., negative pseudopartial derivatives) are
found by subtracting the outputs of two backward passes, as shown in panel (a).
Values shown in blues correspond to x1 = 1, x2 = 0, x3 = 1, x4 = 0, i.e., the same
example of assignment as in Fig. 1. Also note that the considered 4-SAT problem is
equivalent to the polynomial function in Fig. 1a when assuming a1 = 1, a2 = −1, a3 = 1,
and a4 = − 1.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 4

www.nature.com/naturecommunications

Notably, the run-time-distribution, i.e., the cumulative probability of
finding the solution over algorithm runtime42 in hardware, follows
closely the simulated one (Fig. 4d).

Discussion
Theperformanceof in-memorymixed-signal computing circuitsmight
be affected by device and circuit non-idealities, especially those of
memristors. In light of these concerns, we performed detailed SPICE
simulations of prospective 1T1R circuits using experimental ranges for
memristor conductances and their tuning accuracies and focusing on
uniform random K-SAT problems (Supplementary Note 6). We first
modeled dot-product operations in forward and backward steps,
specifically studying the impact of the maximum degree of K-SAT
problems (K), clause-to-variable ratio (M/N) and crossbar dimension/
problem size, and memristor tuning precision on the accuracy of
computed clause currents, break and gain values. Simulation results
show that the forwardoperation (Supplementary Figs. S12, S15) ismore
robust compared to the backward one (Supplementary Figs. S13–S17),
which is explained by the simpler functionality of the former, in which
only reliable detection of zero and unit clause currents is required. In
backward operation, errors in break and gain values are significantly
larger (Supplementary Fig. S13). However, the errors decrease with

increasing K due to the reduced number of clauses with sj and zj equal
to one, whereas it remains relatively unaffected by increasing M/N
(Supplementary Fig. S14).

On the other hand, crossbar array dimensions (Supplementary
Figs. S15, S16) and memristor tuning error (Supplementary Fig. S17)
significantly reduce dot product accuracy and increase the overlap
between neighboring adjacent break and gain values. The degradation
upon crossbar array scaling is mainly due to larger unwanted leakage
currents from nominally off-state memristors (with V0Goff ~ 0.2μA
from a singlememristor). Hence, it can be addressed by improving the
ON/OFF ratio of memristor technology. The alternative, more scalable
solution to increasing crossbar dimensions for solving larger problems
is to rely on multi-tile architecture with fixed-size smaller crossbar
arrays. For example, Supplementary Fig. S24 shows one possible
approach in which a logical crossbar required for mapping a large-
scale combinatorial optimization problem is partitioned into multiple
smaller physical crossbar arrays (tiles) that are connected with an
interconnection network (Supplementary Note 12).

Crucially, the impact of studied non-idealities on the algorithmic
performance is less severe, likely due to the inherent stochastic nature
of heuristic algorithms and larger conductance margins in binary
weight implementation as confirmed by hardware-aware modeling

Fig. 3 | In-memory computing hardware implementation. a A toy example of
CNF Boolean function withM = 2, N =K = 4, which is equivalent to the monomial in
Fig. 1a with a1 = 1, a2 = −1, a3 = 1, and a4 = − 1 when represented in a PUBO form. b A
prospective in-memory 1T1R memristor circuit implementation of the panel (a)
problem for parallel computation of its break values. Each 1T1R memory cell is
comprised of a select transistor coupled with a memristor. Note the gate voltages
are tied to the word lines in the utilized chip to suppress leakages through

unselected memory cells. A text shown in blue corresponds to a specific variable
assignment x1 = 1, x2 = 0, x3 = 1, x4 = 0. c Experimental setup details for solving the
considered 14-variable 64-clause 3-SAT problem. Two arrays represent 1T1R
crossbar circuits of a chip in the integratedCMOS/memristor setup andare used for
demonstrating forward and backward passes. The colormaps show the measured
conductance of programmed memristors corresponding to the studied 3-SAT
problem in the experiment.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 5

www.nature.com/naturecommunications

(Supplementary Note 9). For example, our simulations predict a neg-
ligible drop in the time-to-solution of the WalkSAT/SKC algorithm
compared to the ideal (no tuning error) scenario for a 100-variable
uniform random problem (Supplementary Fig. S18) assuming experi-
mentally plausible ~ 2.4% and ~ 20% relative tuning accuracy (coeffi-
cient of variation) for high and low conductance values, respectively45.

The proposed approach is extremely compact, requiring ~ 3NM
total memory devices in the crossbar arrays, which can be used as a
proxy for the overall hardware complexity, for massively parallel high-
throughput computation of pseudo gradient in a polynomial with M
monomials and N binary variables (Fig. 1 and Supplementary Fig. S4e).
Similarly, an efficient design for computing variable gains in CNF
Boolean function with M clauses and N variable features ~ 6NM mem-
ory devices (Fig. 2), which can be further reduced to ~ 4NM complexity
for three-terminal memory device implementations (Supplementary
Fig. S5) – see a specific example of 1T1R circuit in Supplementary
Fig. S10. Figure 5 compares the crossbar area ratio between QUBO-
converted problems, required for implementation with quadratic
HNNs/IMs, and the proposed approach on the different SAT
benchmarks46–49 to quantify the area advantage in the context of SAT
solvers. The advantage grows with the problem order exponentially,
which can be analytically derived for SATs based on K-input XOR
Boolean functions, and, e.g., ~ 3100 for the largest degree problem
from SAT2020 competition benchmark46 (Fig. 5 and Supplementary
Fig. S11).

Moreover, Fig. 5 area advantage estimates are rather conservative.
We expect a comparable area of peripheral circuitry of crossbar arrays
in both quadraticHNNs/IMs and the proposed implementation. On the
other hand, QUBO-converted problems featuremore variables, e.g., by
~ 4.5 × more for hard 3-SAT problems, and this coefficient grows

quickly with problem order6. Therefore, additional overheads are
expected due to the mapping of coupling weights onto physical
crossbar arrays, whose dimensions would be constrained by IR drops.
Furthermore, HNNs/IMs implementations require multi-bit weights,
while the proposed approach needs only binary weights, hence com-
ing with lower programming circuitry overhead and/or enabling more
compact crossbar array circuits based on conventional digitalmemory
technologies.

Similar advantages are expected for speed and energy efficiency
based on the proposed approach. Assuming negligible currents from
off-state memory cells, the forward pass delay is independent of K.
Similar to ratioed logic50, worst-case logarithmic scaling with K is
expected for the backward pass latency, i.e., very weak dependence of
the function degree. On the system level, in the advanced process
implementations, energy is largely dominated by data movement in
high-performance computing circuits51, including in-memory com-
puting circuits52, so energy consumption is expected to increase
roughly proportional to linear circuit dimensions. Furthermore, the
more compact circuitry for gradient computation could enable fitting
the SAT solver completely on a chip, further improving efficiency by
cutting energy and latency taxing inter-chip communication over-
heads. In addition, solving optimization problems in a native high-
order form has led to faster convergence22,24, partly due to additional
spurious minima in the energy landscape of QUBO-converted
problems22.

For a more quantitative comparison with prior work, we devel-
oped an architecture (Supplementary Fig. S18 and Supplementary
Note 7) based on the 1T1R approach and modeled physical perfor-
mance by conducting hardware-aware simulations incorporating non-
ideal dot-product computation due to memristor variations, timing,

Fig. 4 | Experimental results. a, b Measured output (bit-line) currents for (a)
forward and (b) backward passes. In panel (a), currents are grouped according to
their ideal clause literal sum values. In panel (b), outputs are shown against cal-
culated ideal break values. In both panels, data are collected during a single itera-
tion of an algorithm. c, d Functional performance comparison between ideal

softwaremodel and experiment, showing (c) evolutionof the numberofunsatisfied
clauses, and (d) run-length distribution curves obtained across 200 iterations
(restarts) of the algorithm, each time with new randomly initialized variable
assignments. In all experiments, MAX_FLIPS = 10,000.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 6

www.nature.com/naturecommunications

and energy models of crossbar array and peripheral circuits (Supple-
mentary Tables S1, S2). Moreover, we developed a similar architecture
for discrete-time binary-state high-order HNN22 (Supplementary
Fig. S19 and Supplementary Note 8) and modeled its performance
using similar frameworks and assumptions (Supplementary Tables S3,
S4). For simplicity, we focused on CNF-based implementation (Fig. 2,
and Supplementary Fig. S10) of HNN, i.e., similar to that of WalkSAT/
SKC solver, because of CNF-based native formulation of the studied
problems. The key difference of HNN architecture is gradient-descent
heuristics that utilize partial derivative/gain of variables to update
states (see “Methods” section), i.e., not just break values as in the case
of WalkSAT/SKC solver.

Figure 6 shows the main results of the hardware performance
modeling study, while Supplementary Table S5 and Supplementary
Note 10 provide details of comparison with other approaches,
including the Coherent Ising Machine53, D-Wave’s 2000Q quantum
annealer54, sparse Ising Machines (sIM)55, memristor crossbar based
second-order discrete-time HNNs (mem-SO-HNN)16,22 and the Aug-
mented IsingMachine (AIMs)28. WalkSAT/SKC outperforms high-order
HNN in both hardware time and energy to solution metrics for larger
problems. This is not surprising given the native CNF encoding of the
studied problems,which ismore efficiently exploited byWalkSAT/SKC
heuristics. Most importantly, solvers based on our proposed approach
are at least ~ 7.7 times faster than other discrete-time solvers and three
orders of magnitude more energy efficient than the memristor-based
second-order HNN, owing to compact hardware footprint and higher
navigational efficiency of native high-order solvers. Moreover, the
proposed hardware has at least two orders of magnitude higher
throughput per watt and throughput per unit area compared to all
other technologies.

Note that a direct comparison to recent work on high-order IMs24

is challenging because of the lack of hardware implementation details.
Also, while AIMs28 was specifically developed to solve 3-SAT problems,
a crude analysis for extending it to support K-order problems with M
clauses (by assuming an implementation withM ×N array of unit cells,
each hosting K−1 N:1 multiplexers) reveals inferior worst-case ~KN2M
complexity scaling (as opposed to ~NM of our approach). It is also

worthnoting that a forwardpass described in Fig. 2c is similar to earlier
work on clause evaluation with content addressable memory
implementations56–58. Indeed, the critical operation in the content
addressable memory computation is in-memory vector-by-matrix
multiplication between binary weights and inputs that produce bin-
ary “match” outputs. However, our approach takes advantage of all the
outputs, not just binary match values. This feature and, more impor-
tantly, backward pass are key novelties of our approach, enabling for
the first time massively parallel in-memory computing of make and
break values of CNF-form Boolean functions and, more generally,
pseudo gradient and gradient computation in functions of binary and
real-valued variables respectively.

Furthermore, the proposed approach can be extended to com-
puting gradients of functions with real-valued variables (Supplemen-
tary Fig. S21). Let’s first note that in the simplest case of multi-linear
polynomial functions, a partial derivative with respect to a given
variable equals a sumofmonomials that sucha variable is amember of,
divided by the value of that variable (Supplementary Fig. S21a). Partial
derivatives are computed in parallel to follow these steps. Like the
binary variable function, the first step involves anN ×M crossbar array
with similarly configured binary memory weights to compute in-
memory monomial products. Due to real-valued variables, the pro-
ducts are computed differently by applying logarithmically encoded
variables and exponentiating the outputs (Supplementary Fig. S21b).
Appropriately weighted and specific (to the considered variable)
monomial terms are summed up in the second array based on the
multi-bit memory devices. Finally, the outputs from the second array
are divided by variable values. Naturally, the division operation
requires the variable to be nonzero, and may require a preprocessing
step of shifting the variable ranges. Generalization beyondmulti-linear
function requires analog weights in the first array, and adequately
adjusting weights in the second array (Supplementary Fig. S21d, e).
Supplementary Fig. S21c shows the main idea of floating gate memory
device implementation of exponentiation, while Supplementary
Fig. S22 shows anexample of a complete in-memory computing hybrid
circuit basedonmemristor andfloating gatememorydevices. Notably,
exponentiation and division are implemented directly in the second
array by operating a floating gate transistor in the sub-threshold
regime. The circuit operation analysis shows a trade-off between the
maximum degree (K) and bit-precision of the monomial coefficients
that can be implemented with the fixed dynamic range of the poly-
nomial’s variables (Supplementary Note 11). Preliminary simulation
results using circuit and device parameters from prior in-memory
computing work (Supplementary Table S6) show relative real-valued
gradient error well below 10%, even without circuit optimization
(Supplementary Fig. S23).

In summary, we believe the proposed hardware paradigm of
computing high-degree polynomials in memory shows great promise
for various applications relying on optimization algorithms, especially
combinatorial optimization. Its versatility and scalability could enable
the implementation of more advanced and powerful discrete-time
heuristics, like G2WSAT59, for solving constraint satisfaction problems.
Its capability of computing real-valued gradients could pave the way
towards implementing large-scale continuous-time continuous-state
dynamics-based solver hardware potentially much faster than their
discrete-time counterparts. The efficient hardware for solving pro-
blems natively in the high-order space could also boost new efficient
problem embeddings, such as for quadratic assignment problems, by
eliminating commonly used one-hot encoding in favor of much more
compact high-order problem formulations36.

Methods
3-SAT instance generation
Random uniform 3-SAT problems with M clauses and N variables are
generatedby initializing anempty list of clauses and repeatedly adding

Fig. 5 | SAT solver area advantage for the proposed approach over quadratic
HNN/IM. The area advantage is defined as the ratio of the total number ofmemory
devices in the crossbar arrays required for both implementations. The studied
benchmark problems SATLIB, XOR, SAT2020, JHN, and SEMIPRIME correspond to,
respectively, uniform random 3-SAT problems47, custom-generated K-input XOR
problems, competition 3-SAT problems48, “JHN” DIMACS benchmark instances
from SATLIB benchmark47, and custom-generated 3-SAT problems for semiprime
factoring49. The higher order problems were first converted to 3-SAT with the
order-reduction technique and then converted to corresponding QUBO problems
using the Rosenberg approach29. Note that amore compact QUBO formulation can
be obtained for XORand otherproblems by using Tseytin transformation63, though
at the cost of substantial preprocessing overhead. Supplementary Fig. S11 shows
the data used for this figure.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 7

www.nature.com/naturecommunications

“valid” clauses to that list, one at a time, until the number of clauses
reaches the target value of M. Specifically, a “candidate” clause is
generated by randomly sampling three out of 2N literals without
replacement. Each of the 2N literals has an equal probability of being
chosen. Two criteria are then checked to determine if the candidate
clause is valid: If both literals of a variable are present in the candidate
clause; and if the candidate clause is already present in the clause list. If
both criteria are false, such a clause is added to the list. Once the entire
list of clauses is ready, a SAT solver is run on the generated instance to
check if it is satisfiable.

3-SAT problems withM = 64 clauses are considered. This number
matches the linear dimension of the memristor crossbar arrays and
hence corresponds to the largest SATproblems in termsof thenumber
of clauses that can be implemented with an experimental setup with-
out employing time-consuming time-multiplexing techniques. Prior
work shows44 that satisfiable randomly generated uniform 3-SAT pro-
blems with 14 variables, corresponding to clause-to-variable ratio
M/N ≈ 4.57, are among the hardest. This was confirmed by generating
and solvingmultiple instances of 3-SAT problemswithM = 64 and N in
the range from 12 to 21.

Supplementary Fig. S7 provides a specific instance thatwas solved
in the experimental demonstration in the common “CNF” format.

WalkSAT/SKC algorithm. The implemented algorithm has the fol-
lowing structure:

Input: 3-SAT CNF-formula, MAX_FLIPS, MAX_ITER, probability p.
Output: “true”, if a satisfying assignment is found, “false”

otherwise
1. for t = 1 to MAX_ITER
2. Randomly initialize variable assignments X =X0

3. for f = 1 to MAX_FLIPS
4. if X is a solution, return true
5. Randomly choose an unsatisfied clause c
6. Calculate a set of break values (BV) for all member vari-

ables of c
7. if min(BV) = 0, flip variable with zero break value; pick

randomly in a tiebreaker
8. else
9. with probability p, select & flip a variable in the clause

randomly
10. with probability 1-p, select & flip a variable with the

smallest break value; pick at random in a tiebreaker

Note that similarly to the original version43, known as WalkSAT/
SKC, this algorithm uses only break values as deciding metric.

Discrete-time binary-state high-order Hopfield neural network
algorithm. The implemented algorithm has the following structure:

Input: High-order energy function H in PUBO form, MAX_FLIPS,
MAX_ITER, temperature decrease rate r, Initial temperature T0, and
offset_increase_rate.

Output: “true”, if a satisfying assignment is found, “false” otherwise.
1. for t = 1 to MAX_ITER
2. Randomly initialize variable assignments X =X0

3. Eoffset = 0
4. for f = 1 to MAX_FLIPS
5. Update temperature as T fð Þ=T0e

�rf

6. for each variable, j do
7. Propose a new state as xj = 1if

∂H
∂xj

+ Eoffset 2xj � 1
� �

<
ηjelse0

8. If a new state resulted in a variable flip, record
9. if at least one flip is accepted then
10. Choose one flip uniformly at random amongst them

and update the state
11. Eoffset = 0
12. else
13. Eof f set = Eof f set +offset increase rate

Here, ηj�N½0,
ffiffiffiffiffiffi
2π

p
T fð Þ� is a random variable sampled from a

normal distribution with zero mean and standard deviation propor-
tional to the temperature at that step.

Note that this algorithm equivalently implements classical Hop-
field neural network algorithms26 if offset_increase_rate is set to zero
(therefore fixing Eoffset to zero). In a physical implementation, a
variablexj encodes a neuron state in the network, ∂H

∂xj
corresponds to

the weighted feedback accumulated at each neuron in a particular
step,while ηj represents the noise added to the accumulated feedback.
On the other hand, the inclusion of Eoffset and considering all variable
flips in parallel are two aspects borrowed from the digital annealing
algorithm60 and have been shown to improve baseline high-order
Hopfield neural network performance by up to an order22.

Definition of Time-to-Solution
For the purposes of this paper, the termTime-to-Solution (TTS) is used
to refer to Time-to-99% certainty, or the time taken for the solver/

Fig. 6 | Physical performancemodeling results. a Time and (b) energy to solution
of the proposed WalkSAT/SKC and high-order HNN solvers for random uniform
3SAT problems. The shown data are computed based on developed hardware
architecture (Supplementary Figs. S18, S19) and their models (Supplementary
Table S1–S4) – see Supplementary Notes 7, 8 formore details, and hardware-aware
algorithmic time-to-99% solution certainty post-processed from cumulative dis-
tributions (Supplementary Fig. S25). The shaded area in the plot shows the

interquartile range (25–75%), and themarkers indicate themedian across instances
of that problem size. Hardware-aware algorithmic simulations are taking into
account errors in break/gain values due to memristor tuning errors, with the
assumed relative value of ~ 2.4% and ~ 20% (corresponding standard deviation for
the conductance tuning of 3μS and 0.25μS) for the on- and off-state memristors,
respectively.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 8

www.nature.com/naturecommunications

heuristic to reach the optimal solution of the optimization problem
with 99% certainty. Two types of TTS definitions, namely instance-wise
TTS and batch TTS, are considered. Instance-wise TTS, as the name
suggests, is the TTS of the heuristic when run on a specific instance,
whereas the batch TTS refers to the median of the instance-wise TTS
values across all instances belonging to that problem size.

For a heuristic (either WalkSAT/SKC or high-order HNN) that is
run with a certain value of MAX_FLIPS andMAX_ITER, we first measure
the Run-Length Distribution (RLD) P̂, which is the cumulative dis-
tribution function of the number of variable flips required to find a
solution (run-length) during successful iterations only42. It is defined as

P̂ run length ≤ jð Þ= jftjrun lengthðtÞ≤ jgj
MAX ITER

,

where run length(t) is the run-length of the tth iteration that was
successful, and |.| denotes the set cardinality function. We then
compute the probability of success as

success rate =
of successful iterations

MAX ITER
:

Subsequently, the instance-wise TTS is computed using

TTSi =
MAX FLIPS × log 1�0:99ð Þ

log 1�success rateð Þ if success rate <0:99

P̂
�1

0:99ð Þ if success rate≥0:99

8<
: ,

where TTSi is the TTS of instance i and P̂
�1

0:99ð Þ is the inverse of the
function P̂ at 0.99.

Experimental setup
The experimental setup consists of a custom chip hosting three
64 × 64 memristive crossbar arrays (Supplementary Fig. S8c) inte-
grated with the custom printed circuit board (PCB) (Supplementary
Fig. S8d), and custom-written firmware and Python scripts to com-
municate with the chip using software functions.

The Ta/TaOx/Pt memristors were monolithically integrated in-
house on CMOS circuits fabricated in a TSMC’s 180 nm technology
node (Supplementary Fig. S8a, b). The integration starts with the
removal of silicon nitride and oxide passivation from the surface of the
CMOS wafer with reactive ion etching, and a buffered oxide etch dip.
Chromium and platinum bottom electrodes are then patterned with
e-beam lithography and metal lift-off process, followed by reactive
sputtered 4.5 nm tantalum oxide as the switching layer. The device
stack is finalized by e-beam lithography patterning of sputtered tan-
talum and platinum metal as top electrodes.

The chip’s CMOS subsystem implements digital control and ana-
log sensing circuits for performing in-memory analog computations
(Supplementary Fig. S8e). Each array utilizes digital-to-analog con-
verters (DACs) to drive analog voltages (inputs) to the rows (i.e., word
andgate lines) of the array. There are transimpedance amplifiers (TIAs)
followed by sample-and-hold (S&H) circuits at the outputs to rapidly
convert the currents to voltages, and sample them while providing
virtual ground to the column (bit) lines. The sampled voltages are then
multiplexed and converted to digital values using analog-to-digital
converters (ADCs), each shared by 16 columns.

The PCB supplies DC analog reference signals to the chip, hosts a
microcontroller, and provides a digital interface between the chip and
the Python scripts running on a personal computer via serial com-
munication. Ref. 61 provides more information on the memristor
fabrication and its integration with CMOS circuits.

Data availability
The data that support the findings in this paper are provided in the
main text, Supplementary Information file and available code reposi-
tory (ref. 62 andhttps://github.com/tinish123/imc_hdGrad/tree/v1.0.0).
Additional data related to this study can be made available from the
corresponding authors upon request.

Code availability
Computer codes used to generate SAT instances, perform WalkSAT/
SKC simulations, produce Fig. 6 of the main text, and perform real-
valued gradient computation simulations are available online (ref. 62
and https://github.com/tinish123/imc_hdGrad/tree/v1.0.0). Additional
codes related to this study can be made available from the corre-
sponding authors upon request.

References
1. Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge U.

Press, 2004).
2. Nocedal, J. & Wright, S. J. Numerical Optimization (Springer, 1999).
3. Lasdon, L., Mitter, S. & Waren, A. The conjugate gradient methods

for optimal control problems. IEEE Trans. Autom. Control 12,
132–138 (1967).

4. Glover, F., Kochenberger, G., Henning, R. & Du, Y. Quantum bridge
analytics I: A tutorial on formulating and using QUBOmodels. Ann.
Oper. Res. 314, 141–183 (2022).

5. Ruder, S. An overview of gradient descent optimization algo-
rithms. Preprint at arXiv https://doi.org/10.48550/arXiv.1609.
04747 (2017).

6. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hard-
ware solvers of combinatorial optimization problems. Nat. Rev.
Phys. 4.6, 363–379 (2023).

7. Calvanese Strinati, M. & Conti, C. Multidimensional hyperspin
machine. Nat. Commun. 13, 7248 (2022).

8. Hopfield, J. J. Neural networks and physical systemswith emergent
collective computational abilities. Proc. Natl Acad. Sci. USA 79,
2554–2558 (1982).

9. Ackley, D. H., Hinton,G. E. & Sejnowski, T. J. A learning algorithm for
Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

10. Hopfield, J. J. Neurons with graded response have collective
computational properties like those of two-state neurons. Proc. Natl
Acad. Sci. USA 81, 3088–3092 (1984).

11. Strachan, J. P. & Datta, S. Chapter 11: Emerging hardware approa-
ches for optimization. In: Christensen, D.V. et al. 2022 Roadmap on
neuromorphic computing and engineering. IOP Neuromorphic
Comput. Eng. 2, 2 (2022).

12. Eryilmaz, S. B. et al. Brain-like associative learning using a nanoscale
nonvolatile phase change synaptic device array. Front. Neurosci. 8,
205 (2014).

13. Afoakwa, R. et al. BRIM: Bistable resistively-coupled Ising machine.
HPCA’21 (2021).

14. Guo, X. et al. Modeling and experimental demonstration of a Hop-
field network analog-to-digital converter with hybrid CMOS/mem-
ristor circuits. Front. Neurosci. 9, 488 (2015).

15. Mahmoodi, M. R., Prezioso, M. & Strukov, D. B. Versatile stochastic
dot product circuits based on nonvolatile memories for high per-
formance neurocomputing and neuro- optimization.Nat. Commun.
10, 5113 (2019).

16. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise inmemristor Hopfield neural networks.Nat. Electron.
3, 409–418 (2020).

17. Jiang, M., Shan, K., He, C. & Li, C. Efficient combinatorial optimiza-
tion by quantum-inspired parallel annealing in analoguememristor
crossbar. Nat. Commun. 14, 5927 (2023).

18. Li, C. et al. Analogue signal and image processing with large
memristor crossbars. Nat. Electron. 1, 52–59 (2018).

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 9

https://github.com/tinish123/imc_hdGrad/tree/v1.0.0
https://github.com/tinish123/imc_hdGrad/tree/v1.0.0
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.48550/arXiv.1609.04747
www.nature.com/naturecommunications

19. Wan, W. et al. A compute-in-memory chip based on resistive ran-
dom access memory. Nature 608, 504–512 (2022).

20. Amirsoleimani, A. et al. In-memory vector-matrix multiplication in
monolithic complementary metal–oxide–semiconductor-memris-
tor integrated circuits: Design choices, challenges, and perspec-
tives. Adv. Intell. Syst. 2, 2640–4567 (2020).

21. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory device and applications for in-memory computing. Nat.
Nanotechnol. 15, 529–544 (2020).

22. Hizzani, M. et al. Memristor-based hardware and algorithms for
higher-order Hopfield optimization solver outperforming quadratic
Ising machines. In IEEE International Symposium on Circuits and
Systems (ISCAS) 1–5 (2024).

23. Senjowski, T. J. High-order Boltzmann Machines. Neural Networks
for Computing, (1986).

24. Bybee, C. et al. Efficient optimization with higher-order Ising
Machines. Nat. Commun. 14, 6033 (2023).

25. Johnson, J. L. A neural network approach to the 3-satisfiability
problem. J. Parallel Distrib. Comput. 6, 435–449 (1989).

26. Joya, G., Atencia, M. A. & Sandoval, F. Hopfield neural networks for
optimization: Study of the different dynamics.Neurocomputing 43,
219–237 (2002).

27. Chermoshentsev, D. A., et al. Polynomial unconstrained binary
optimization inspired by optical simulation. Preprint at arXiv https://
doi.org/10.48550/arXiv.2106.13167 (2021).

28. Sharma, A. et al. Augmented electronic Ising machine as an effec-
tive SAT solver. Nat. Sci. Rep. 13, 22858 (2023).

29. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2,
5 (2014).

30. Hart, W. E. & Istrail, S. Robust proofs of NP-hardness for protein
folding: general lattices and energy potentials. J. Comput. Biol. 4,
1–22 (1997).

31. McArdle, S. et al. Quantum computational chemistry. Rev. Mod.
Phys. 92, 015003 (2020).

32. Finnila, A. B. et al. Quantum annealing: A new method for mini-
mizing multidimensional functions. Chem. Phys. Lett. 219,
343–348 (1994).

33. Xia, R. & Teng, B. & Sabre K. Electronic structure calculations and
the Ising Hamiltonian. J. Phys. Chem. B 122, 3384–3395 (2017).

34. Lenstra, J. K., Rinnooy Kan, A. H. G. & Brucker, P. Complexity of
machine scheduling problems. Ann. Discret. Math. 1,
343–362 (1977).

35. Prasad, M. R., Biere, A. & Gupta, A. A survey of recent advances in
SAT-based formal verification. Int. J. Softw. Tools Technol. Transf. 7,
156–173 (2005).

36. Glos, A., Krawiec, A. & Zimboras, Z. Space-efficient binary optimi-
zation for variational quantum computing. NPJ Quantum Inf. 8,
39 (2022).

37. Papadimitriou, C. & Steiglitz, K. Combinatorial Optimization (Dover
Publications, 1998).

38. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern
recognition. 29 NIPS’16 (2016).

39. Hoover, B., Horng Chau, D., Strobelt, H. & Krotov, D. A universal
abstraction for hierarchical Hopfield networks. NIPS’22 Workshop
on The Symbiosis of Deep Learning and Differential Equa-
tions (2022).

40. Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A. &
Ioannou, P. A. High-order neural network structures for identifica-
tion of dynamical systems. IEEE Trans. Neural Netw. 6,
422–431 (1995).

41. Jordán, C. Calculus of Finite Differences. American Mathematical
Soc. (1965).

42. Hoos, H. H. & Stutzle, T. Stochastic local search: Foundations and
applications. (Elsevier 2004).

43. Selman, B., Kautz, H. A. & Cohen, B. Noise strategies for improving
local search. Proc. AAAI-94 337–343 (1994).

44. Selman, B.,Mitchell, D. & Levesque, H.Generating hard satisfiability
problems. Artif. Intell. 81, 17–29 (1996).

45. Sheng, X. et al. Low‐conductance and multilevel CMOS‐integrated
nanoscale oxide memristors. Adv. Electron. Mater. 5.9,
1800876 (2019).

46. Froleyks, N. et al. SAT competition 2020. Artif. Intell. 301,
103572 (2021).

47. Hoos, H. SATLIB — Benchmark problems https://www.cs.ubc.ca/
~hoos/SATLIB/benchm.html (2011).

48. Balyo, T. et al. Solver and benchmark descriptions. Proceedings of
SAT Competition. http://hdl.handle.net/10138/318450 (2020).

49. Purdom, P. & Sabry, A. CNF Generator for Factoring Problems
https://cgi.luddy.indiana.edu/~sabry/cnf.html (2018).

50. Strukov, D. B. & Likharev, K. K. CMOL FPGA: A reconfigurable
architecture for hybrid digital circuits with two-terminal nanode-
vices. IOP Nanotechnol. 16, 888 (2005).

51. Boroumand, A. et al. Google workloads for consumer devices:
Mitigating data movement bottlenecks. In Architectural Support for
Programming Languages and Operating Systems (2018).

52. Bavandpour, M., Mahmoodi, M. R. & Strukov, D. B. aCortex: An
energy-efficient multi-purpose mixed-signal inference accelerator.
IEEE J. Explor. Solid State Comput. Devices Circuits 6,
98–106 (2020).

53. Inagaki, T. et al. A coherent Ising machine for 2000-node optimi-
zation problems. Science 354.6312, 603–606 (2016).

54. Willsch, D. et al. Benchmarking advantage and D-Wave 2000Q
quantum annealers with exact cover problems. Quantum Inf. Pro-
cess. 21.4, 141 (2022).

55. Aadit, N. A. et al. Massively parallel probabilistic computing
with sparse Ising machines. Nat. Electron. 5.7, 460–468
(2022).

56. Park, S., Nam, J. W. & Gupta, S. K. HW-BCP: A custom hardware
accelerator for SAT suitable for single chip implementation for
large benchmarks. In Asia and South Pacific Design Automation
Conference (2021).

57. Pedretti, G. et al. Zeroth and high-order logic with content
addressable memories. In International Electron Devices Meet-
ing (2023).

58. Xie, S. et al. Snap-SAT: A one-shot energy-performance-aware all-
digital compute0in-memory solver for large-scale hard Boolean
satisfiability problems. ISSCC’23 420-423 (2023).

59. Li, C. M., & Huang, W. Q. Diversification and determinism in local
search for satisfiability. In Proceedings of Theory andApplications of
Satisfiability Testing Conference. 158−172 (Springer Berlin Heidel-
berg, 2005).

60. Aramon, M. et al. Physics-inspired optimization for quadratic
unconstrained problems using a digital annealer. Front. Phys. 7,
48 (2019).

61. Li, C. et al. CMOS integrated nanoscale memristive crossbars for
CNN and optimization acceleration. IMW’20 (2020).

62. Bhattacharya, T. Computing high-degree polynomial gradients in
memory. tinish123/imc_hdGrad: v1.0.0. Zenodo https://doi.org/10.
5281/zenodo.13508539 (2024).

63. Tseytin, G. S. On the complexity of derivation in propositional cal-
culus. In Slisenko, A. O. (ed.) Studies in Constructive Mathematics
and Mathematical Logic, Part II, Seminars in Mathematics 115–125.
Steklov Mathematical Institute (1970).

Acknowledgements
This work is supported by the Defense Advanced Research Projects
Agency (DARPA)underAir ForceResearchLaboratory (AFRL) contract no
FA8650-23-3-7313.

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 10

https://doi.org/10.48550/arXiv.2106.13167
https://doi.org/10.48550/arXiv.2106.13167
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://hdl.handle.net/10138/318450
https://cgi.luddy.indiana.edu/~sabry/cnf.html
https://doi.org/10.5281/zenodo.13508539
https://doi.org/10.5281/zenodo.13508539
www.nature.com/naturecommunications

Author contributions
D.S. devised and supervised research. T.B. conceived the main idea of
high-degree gradient computing, conducted the experiments, and
performed circuit and architectural simulations. T.B. and G.H.H. per-
formed algorithm simulations. X.S., J.I., and J.P.S. contributed to the
memristor fabrication and experimental system development. T.B.,
G.H.H., G.P., and T.V.V. contributed to hardware modeling and perfor-
mance benchmarking. T.B. and D.S. wrote the manuscript. R.B. led a
collaboration effort. All authors analyzed and discussed the results.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-52488-y.

Correspondence and requests for materials should be addressed to
Tinish Bhattacharya or Dmitri B. Strukov.

Peer review information Nature Communications thanks Connor Bybee
andHuaqiangWu for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-52488-y

Nature Communications | (2024) 15:8211 11

https://doi.org/10.1038/s41467-024-52488-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Computing high-degree polynomial gradients in memory
	Parallel gradient computation
	Experimental results
	Discussion
	Methods
	3-SAT instance generation
	Outline placeholder
	WalkSAT/SKC algorithm
	Discrete-time binary-state high-order Hopfield neural network algorithm

	Definition of Time-to-Solution
	Experimental setup

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

