001038431 001__ 1038431
001038431 005__ 20250203103132.0
001038431 020__ $$adoi.org/10.48550/arXiv.2408.10184
001038431 0247_ $$2doi$$a10.48550/ARXIV.2403.09272
001038431 037__ $$aFZJ-2025-01427
001038431 1001_ $$0P:(DE-Juel1)190666$$aStargardt, Maximilian$$b0$$ufzj
001038431 245__ $$aGlobal Shipyard Capacities Limiting the Ramp-Up of Global Hydrogen Transport
001038431 260__ $$barXiv$$c2024
001038431 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738231019_10090
001038431 3367_ $$2ORCID$$aWORKING_PAPER
001038431 3367_ $$028$$2EndNote$$aElectronic Article
001038431 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001038431 3367_ $$2DRIVER$$apreprint
001038431 3367_ $$2BibTeX$$aARTICLE
001038431 3367_ $$2DataCite$$aOutput Types/Working Paper
001038431 520__ $$aDecarbonizing the global energy system requires significant expansions of renewable energy technologies. Given that cost-effective renewable sources are not necessarily situated in proximity to the largest energy demand centers globally, the maritime transportation of low-carbon energy carriers, such as renewable-based hydrogen or ammonia, will be needed. However, whether existent shipyards possess the required capacity to provide the necessary global fleet has not yet been answered. Therefore, this study estimates global tanker demand based on projections for global hydrogen demand, while comparing these projections with historic shipyard production. Our findings reveal a potential bottleneck until 2033-2039 if relying on liquefied hydrogen exclusively. This bottleneck could be circumvented by increasing local hydrogen production, utilizing pipelines, or liquefied ammonia as an energy carrier for hydrogen. Furthermore, the regional concentration of shipyard locations raises concerns about diversification. Increasing demand for container vessels could substantially hinder the scale-up of maritime hydrogen transport.
001038431 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001038431 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
001038431 588__ $$aDataset connected to DataCite
001038431 650_7 $$2Other$$aGeneral Economics (econ.GN)
001038431 650_7 $$2Other$$aFOS: Economics and business
001038431 7001_ $$0P:(DE-HGF)0$$aKress, David$$b1
001038431 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b2$$ufzj
001038431 7001_ $$0P:(DE-HGF)0$$aMeyer, Jörn-Christian$$b3
001038431 7001_ $$0P:(DE-Juel1)130470$$aLinßen, Jochen$$b4$$ufzj
001038431 7001_ $$0P:(DE-HGF)0$$aWalther, Grit$$b5
001038431 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
001038431 773__ $$a10.48550/ARXIV.2403.09272
001038431 909CO $$ooai:juser.fz-juelich.de:1038431$$pVDB
001038431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190666$$aForschungszentrum Jülich$$b0$$kFZJ
001038431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b2$$kFZJ
001038431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b4$$kFZJ
001038431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
001038431 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
001038431 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001038431 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
001038431 9141_ $$y2024
001038431 920__ $$lyes
001038431 9201_ $$0I:(DE-Juel1)ICE-2-20101013$$kICE-2$$lJülicher Systemanalyse$$x0
001038431 980__ $$apreprint
001038431 980__ $$aVDB
001038431 980__ $$abook
001038431 980__ $$aI:(DE-Juel1)ICE-2-20101013
001038431 980__ $$aUNRESTRICTED