001038448 001__ 1038448
001038448 005__ 20250203103335.0
001038448 037__ $$aFZJ-2025-01444
001038448 1001_ $$0P:(DE-Juel1)187524$$aUecker, Jan$$b0$$eCorresponding author
001038448 1112_ $$aSOFC: Eighteenth International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII)$$cBoston$$d2023-07-02 - 2023-07-07$$wUSA
001038448 245__ $$aElectrochemical Activity and Stability of Pure Gadolinium Doped Ceria as Fuel Electrode in Solid Oxide Electrolysis Cell
001038448 260__ $$c2023
001038448 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1738243583_31342
001038448 3367_ $$033$$2EndNote$$aConference Paper
001038448 3367_ $$2BibTeX$$aINPROCEEDINGS
001038448 3367_ $$2DRIVER$$aconferenceObject
001038448 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001038448 3367_ $$2ORCID$$aOTHER
001038448 520__ $$aThe state-of-the-art fuel electrode materials for solid oxide electrolysis cells (SOECs) are Ni-cermets due to their high electro-catalytic activity, high electrical conductivity and the low price. However, one major concern that must be solved for a widespread commercialisation is their poor degradation behaviour during electrolysis operation caused by for example Ni migration, depletion and agglomeration in the fuel electrode. One strategy to improve the durability of SOECs is the usage of alternative fuel electrode materials. For instance, completely Ni-free fuel electrodes may solve the problems of morphological degradation during operation and further could enhance redox cycling stability. Within possible candidates, gadolinium doped ceria (GDC) is an interesting material due to good stability towards carbon deposition and the possibility to host electro catalysis in electrolysis reactions [1, 2]. Furthermore, GDC (Ce0.8Gd0.2O2-δ) shows electronic conducting (700 °C, 0.028 S·cm-1) and ionic conducting (700 °C, 0.47 S·cm-1) properties at low partial pressures of oxygen and high temperatures [3]. Hence, in this work we have prepared electrolyte supported single cells with GDC (Ce0.8Gd0.2O2-δ) as single phase fuel electrode for their use as SOEC. The single cells (GDC//8YSZ//GDC//LSCF) were characterized by electrochemical impedance spectroscopy (EIS) and current-voltage characteristics in steam electrolysis, co-electrolysis and CO2 electrolysis conditions exhibiting 70 % of the performance compared to similar produced Ni-GDC fuel electrode single cells at 900 °C [4]. Furthermore, the results include process analysis by EIS, long term stability experiments for steam electrolysis and CO2 electrolysis conditions of at least 1000 hours and post characterization of the degraded cells by EIS, SEM and EDX analysis.[1] Nakmura et al. Journal of the Electrochemical Society155 (2008) B563.[2] Chueh et al. Nature Materials11 (2012) 155-161.[3] Maricle et al. Solid State Ionics52 (1992) 173-182.[4] Unachukwu et al. Journal of Power Sources556 (2023) 232436.
001038448 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001038448 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001038448 7001_ $$0P:(DE-Juel1)169490$$aVibhu, Vaibhav$$b1
001038448 7001_ $$0P:(DE-Juel1)180285$$aUnachukwu, Ifeanyichukwu Daniel$$b2
001038448 7001_ $$0P:(DE-Juel1)129936$$aVinke, Izaak C.$$b3
001038448 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b4
001038448 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5$$ufzj
001038448 8564_ $$uhttps://iopscience.iop.org/article/10.1149/MA2023-0154276mtgabs
001038448 909CO $$ooai:juser.fz-juelich.de:1038448$$pVDB
001038448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187524$$aForschungszentrum Jülich$$b0$$kFZJ
001038448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b1$$kFZJ
001038448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich$$b3$$kFZJ
001038448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b4$$kFZJ
001038448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
001038448 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
001038448 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001038448 9141_ $$y2024
001038448 920__ $$lyes
001038448 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001038448 980__ $$aabstract
001038448 980__ $$aVDB
001038448 980__ $$aI:(DE-Juel1)IEK-9-20110218
001038448 980__ $$aUNRESTRICTED