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Introduction

Solving linear systems of equations represent an insightful oppor-

tunity to benchmark problems on quantum annealers. While such

equations can be efficiently solved using the Gauss algorithm on

classical computers, quantum annealers necessitate the formulation

of the problem as a Quadratic Unconstrained Binary Optimization

(QUBO) problem, generally NP-hard. We embrace this opportu-

nity by investigating strategies for solving discrete partial differ-

ential equations. The QUBO coefficients, derived from encoding

the problem variables via fixed-point binary representations, ex-

hibit exponential scaling, which presents a significant challenge for

state-of-the-art quantum annealers. We propose a method termed

‘gate-based encoding’, which conceptualizes the problem in a log-

ical circuit format. This approach effectively addresses the issue of

exponential scaling by leveraging ancilla qubits, and leads to en-

hanced success probabilities as well as the capability to solve prob-

lems of marginally greater complexity compared to conventional

QUBO formulations.

Quantum annealers and the path towards achieving quantum ad-
vantage

Quantum computing has the potential to solve problems that clas-

sical computing cannot solve efficiently. These problems are found

in important applications, such as process and supply chain opti-

mization, simulation of microscopic systems, and quantum machine

learning. The term ‘quantum advantage’ refers to the capability of

performing a useful task more efficiently than a classical computer.

As of today, quantum computers are not yet advanced enough to

surpass classical computers in solving real-world problems.1,2

1 Arute et al., “Quantum Supremacy
Using a Programmable Superconduct-
ing Processor” (2019)
2 Kim et al., “Evidence for the Utility
of Quantum Computing before Fault
Tolerance” (2023).

Researchers are exploring various platforms to achieve quan-

tum advantage, each with its own advantages and challenges.

These platforms differ in their operational principles, scalability,
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error rates, and physical requirements.3,4,5 It is currently uncertain3 Nielsen and Chuang, Quantum
Computation and Quantum Information
(2010).
4 Resch and Karpuzcu, “Quantum
Computing” (2019).

5 E.g. superconducting qubits are
the largest gate-based platforms as
of today, but they require very low
temperatures. Trapped ion platforms
require intricate laser systems and are
difficult to scale, but they offer long
coherence times. Photonic platforms
operate at room temperature and are
naturally robust towards decoher-
ence, but interacting with photons is
technically challenging. Topological
platforms offer a greater inherent error
resistance.

which platform, if any, will ultimately emerge as the leading con-

tender in the race to quantum advantage. The variety of benefits

and drawbacks raises the question of whether there may not be a

one-size-fits-all solution, but rather a need for customised platforms

designed for specific purposes. In certain situations, it may even be

advantageous to combine characteristics from different platforms.

Currently, quantum computing is still in its early stages. Some ex-

perts consider scalability to be an engineering issue rather than a

theoretical one.6,7 Nevertheless, as the field progresses, fundamen-

6 DiVincenzo, “The Physical Imple-
mentation of Quantum Computation”
(2000).
7 Gonzalez-Zalba et al., “Scaling
Silicon-Based Quantum Computing
Using CMOS Technology” (2021).

tal obstacles may emerge that hinder advancement and necessitate

ongoing innovation and adaptation.

Quantum annealers have the advantage of having a much larger

number of qubits available than gate-based systems. Advantage

by D-Wave Systems Inc. is currently the largest quantum annealer

available. However, quantum annealers are non-universal and are

designed specifically for solving Ising or quadratic unconstrained

binary optimization (QUBO) problems, which are generally NP-

hard.8,9 They are already capable of solving real-world problems8 Wang and Kleinberg, “Analyzing
Quadratic Unconstrained Binary
Optimization Problems via Multicom-
modity Flows” (2009).
9 Pardalos and Jha, “Complexity
of Uniqueness and Local Search in
Quadratic 0–1 Programming” (1992).

today and can keep up with classical alternatives.10

10 Fox et al., mRNA Codon Optimization
on Quantum Computers (2021).

The challenge with linear systems of equations

This thesis analyses the discrete Poisson equation (2.24) as a refer-

ence partial differential equation (PDE). The discrete Poisson equa-

tion is used to numerically solve electrostatics problems such as

those shown in Fig. 1.1. It is expressed as a linear system of equa-

tions (LSE), which is not inherently an optimization problem.11 The11 See section 2.3 Discrete Poisson
equation. The solution of two Poisson
problems, a dipole and a plate capaci-
tor in two dimensions, is visualized in
Fig. 1.1.

value of formulating LSEs as QUBO problems may be questioned,

since they are generally NP-hard problems, whereas LSEs can al-

ready be solved in polynomial time using the Gauss algorithm on

classical computers.12,13,14 However, we argue that this research12 Wang and Kleinberg, “Analyzing
Quadratic Unconstrained Binary
Optimization Problems via Multicom-
modity Flows” (2009).
13 Borle and Lomonaco, “How Viable
Is Quantum Annealing for Solving
Linear Algebra Problems?” (2022).
14 Grcar, “How Ordinary Elimination
Became Gaussian Elimination” (2011).

does contribute to the path towards achieving quantum advantage.

Firstly, creating applications for benchmarking purposes is crucial

in order to measure and compare the strengths and weaknesses of

each platform across a wide range of problems.

Additionally, scientific progress can be unpredictable. Scientists

explore phenomena and may uncover unforeseeable insights. For

example, Albert Einstein’s theory of general relativity was initially

considered a beautiful but abstract concept with little practical use.

However, if time dilation is not taken into account, GPS systems

would be inaccurate by several kilometers.15 Nanotechnology al-15 Hafele and Keating, “Around-the-
World Atomic Clocks” (1972). lows for the manipulation of matter at the atomic scale, leading
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to progress in medicine, electronics, and energy development.16 16 Eigler and Schweizer, “Position-
ing Single Atoms with a Scanning
Tunnelling Microscope” (1990).Lastly, quantum mechanics was originally a theoretical framework,

but it now serves as the foundation for quantum computing and is

therefore the basis of this thesis.17,18,19,20 17 The history of quantum physics
can fill an entire novel. An interesting
anecdote is how Einstein’s explana-
tion of the photoelectric effect was
met with skepticism and resistance.
Millikan himself called Einstein’s hy-
pothesis “bold, not to say reckless”
and claimed it “has been pretty gener-
ally abandoned”. He said these things
in 1916, a year after he was the one to
verify the hypothesis experimentally.

18 Klassen, “The Photoelectric Effect”
(2011).
19 Millikan, “A Direct Determination of
" h ."” (1914).
20 Stuewer, “Historical Surprises”
(2006).

Conventionally solving linear systems of equations (LSEs) Ax =

b on a quantum annealer may not be feasible if the matrix A is

not sparse enough or if high precision is required.21 The QUBO

21 Borle and Lomonaco, “How Viable
Is Quantum Annealing for Solving
Linear Algebra Problems?” (2022).

formulation of LSE problems minimises the norm-squared ∥Ax −
b∥2 after inserting a binary representation.22 [Borle and Lomonaco,

22 See section 3.1 QUBO formulation in
chapter 3 Binary encoding.

2022] provides “supporting evidence, based on hardware-agnostic

simulations, for specific cases where it may be viable to employ

quantum annealing” for solving LSEs. The research shows that if

a large number of precision bits are used to encode solutions, the

minimum energy gap, which is the energy difference between the

ground state and the first excited state, will be too small.23

23 See equation 2.2 in section Quantum
annealing

This thesis explains how the QUBO coefficients exhibit expo-

nential scaling and how this poses a problem for current quantum

annealers due to auto-scaling.24 The challenges with LSEs do not

24 See section 2.2.2 Auto-scaling of
coefficients.

stem from having insufficient qubits. Gate-based quantum comput-

ing can use the Harrow-Hassidim-Lloyd (HHL) algorithm to solve

LSEs. However, the algorithm’s effectiveness can also be impeded

by the requirement for a large number of precision bits to encode

classical data. To ensure the algorithm’s success, coherence must be

maintained.25 25 Duan et al., “A Survey on HHL
Algorithm” (2020).

Gate-based encoding can boost performance

The study of LSEs on quantum annealers is not as extensive as that

of more popular problems. This is because LSEs can already be

efficiently solved with classical algorithms. However, this presents

an opportunity for new findings. Although it may seem logical

to assign a higher weight to leading digits as is discussed in sec-

tion 3.2.2, doing so exponentially can be problematic. The physical

control mechanisms, such as magnetic field biases, may not be able

to fully represent the problem. In such cases, the coupling strengths

are mainly determined by the largest coefficients, with the exponen-

tially smaller coefficients being insignificant in comparison to the

precision supported by the quantum hardware.26
26 See section 2.2.2 Auto-scaling of
coefficients.

We introduce a method named gate-based encoding and evaluate

its performance by solving the discrete Poisson equation.27 This
27 See chapter 5 Gate-based encoding.

method enables the solving of problems with 50% more variables

on D-Wave Advantage by eliminating the exponential weights of

the QUBO coefficients.28 To accomplish this, each digit is treated

28 Figure 6.2 shows an increase on
tuned QPU from nx = 8 to 11. This
is an increase from 6 variables to 9
variables. See Tab. 6.2.
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as a separate set of constraints, corresponding to individual sub-

QUBOs.29 This approach effectively breaks down the entire prob-29 See section 5.1 Constraint Satisfac-
tion Problem. lem into smaller, more manageable parts, similar to performing

written addition and subtraction digit by digit.30 However, it re-30 See section 5.2 Written arithmetic.

quires ancilla qubits in the form of intermediate sum bits, as well as

carry and borrow bits.3131 See section 5.1.1 Sum and carry
ancillas and section 5.1.2 Borrow
ancilla. The name ‘gate-based encoding’ stems from the representation of

constraints as logical gates, with the entire LSE being represented

by a logical circuit.32 This approach, or the ansatz idea, may be32 See section 5.3 Logical gates.

applicable to other arithmetic problem scenarios and assist in over-

coming obstacles.
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Figure 1.1: Electrostatic potential Φ(x)
of dipole point charges (left) and ca-
pacitor (right). Dirichlet boundary
conditions are employed with van-
ishing potential except for the two
plates with Φ(y = ±1) = ±V0. Solu-
tions were obtained using the discrete
Poisson equation as derived in sec-
tion 2.3.3 with a resolution of 128× 128
pixels. The electric field lines are the
negative discrete gradient of Φ (See
section 2.3.1). We solve for Φ using the
LU-decomposition solver from scipy.
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Theory and method

This chapter explains everything needed to understand the results

presented in chapters 3, 4 and 5. Section 2.1 below covers the physi-

cal foundation of quantum annealing, namely adiabatic computing.

It proceeds to explain the concept of quadratic unconstrained bi-

nary optimization (QUBO), which is the necessary way to formulate

problems to be solved on a quantum annealer, and how QUBO

problems are implemented physically using a generalized Ising

model.

The subsequent section 2.2 proceeds with intricacies about the

hardware implementation on commercially available quantum

annealers. We explain how QUBO models are mapped onto the

physical topology, how physical qubits are chained together to

form logical qubits, how D-Wave internally scales down the given

input to its available range of coupling strengths, and the statistical

nature of solution candidates returned by quantum annealers.

2.1 Quantum annealing

Every quantum system is described by an operator H named the

Hamiltonian of the system. H corresponds to the total energy of

that system. When we measure a system’s total energy, the possible

outcomes correspond to the eigenvalue spectrum of H. The ground

state of a system is the lowest energy possible.1 1 Sakurai and Napolitano, Modern
Quantum Mechanics (2020).Quantum annealing is a special case of adiabatic quantum com-

puting, which relies on the adiabatic theorem. This section names the

adiabatic theorem and explains how the result of a procedure called

annealing yields the problem solution denoted as

x = (x0, x1, · · · , xn−1) ∈ {0, 1}n, (2.1)

where n counts the number of binary variables. Each binary vari-

able xi corresponds to a qubit i and can be read out through a
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quantum measurement after the annealing procedure concludes.

Measuring each qubit corresponds to measuring the total energy

of the system, namely to measuring the problem Hamiltonian

Hproblem.

To understand, why the problem solution is encoded into Hproblem,

we need to explain the adiabatic approximation as the fundamental

phenomenon enabling quantum annealing.2 In the adiabatic ap-2 To understand, how the problem
solution is encoded into Hproblem, the
astute reader must be referred to the
references.

proximation, the timescale tmax for changes in the Hamiltonian is

very large compared to the inverse natural frequency of the state

phase factor:33 Sakurai and Napolitano, Modern
Quantum Mechanics (2020).

1
tmax

≡ |⟨n; t|Ḣ|0; t⟩|
En(t)− E0(t)

≪ ⟨n; t| ∂

∂t
|n; t⟩ ∼ En

h̄
. (2.2)

The time-dependent Hamiltonian describing the dynamics of

adiabatic computing is the sum of two terms, the initial Hamilto-

nian and the problem Hamiltonian:

H (t) = −
A( t

tmax
)

2
H0 +

B( t
tmax

)

2
Hproblem. (2.3)

The time t develops from 0 to the annealing time tmax, and the so-

called annealing functions A and B are functions of the normalized

anneal fraction t/tmax.
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Figure 2.1: Representative annealing
functions A and B with respect to
time. Anneal schedule taken from D-
Wave Advantage performance update
Advantage_system5.4.

Figure 2.1 shows the annealing schedule. At t = 0, the annealing

functions must have the property A(0) ≫ B(0) and the system can

thus easily be prepared in the ground state
⊗

i(|0⟩+ |1⟩)/
√

2 of the

initial Hamiltonian

H(0) ≈ − A(0)
2

H0 = −A(0)∑
i

(
1
2

)
σ
(x)
i , (2.4)

where A(0) = 0.40171552 × 10−4 eV. Due to the adiabatic theorem,

the system remains in the ground state when it is slowly annealed

by decreasing A → 0 and increasing B → B(1) ≫ A(1).4 The anneal4 Albash and Lidar, “Adiabatic Quan-
tum Computation” (2018). results in the Hamiltonian approaching

H(tmax) =
B(1)

2
Hproblem. (2.5)

If we are able to encode our problem such that the ground state

of Hproblem corresponds to the solution, we can develop an adi-

abatic machine that can return the solution when we input the

corresponding problem Hamiltonian Hproblem.

x = arg min
x

Hproblem(x) (2.6)

Quantum annealing and adiabatic quantum computation are
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non-universal.5 On the other hand, gate-based quantum computers 5 Sometimes they are called analog.

can run arbitrary quantum algorithms and classical algorithms that

can be solved with logical circuits.

2.1.1 Quadratic unconstrained binary optimization

In contrast to gate-based quantum computers, quantum annealers

are limited to just one problem type in the realm of optimization.

They optimize an energy function H by searching for the global

minimum6,7. Thus, we have to encode our problem model into 6 Finnila et al., “Quantum Annealing”
(1994).
7 Kadowaki and Nishimori, “Quantum
Annealing in the Transverse Ising
Model” (1998).

an energy function as introduced in the last section. We achieve

this by stating the problem as a quadratic unconstrained binary

optimization (QUBO) problem.8 Many real-world applications can 8 Kochenberger et al., “The Uncon-
strained Binary Quadratic Program-
ming Problem” (2014).

be stated as QUBO problems,9 and they are generally NP hard.10,11

9 Lucas, “Ising Formulations of Many
NP Problems” (2014).
10 Wang and Kleinberg, “Analyzing
Quadratic Unconstrained Binary
Optimization Problems via Multicom-
modity Flows” (2009).
11 Pardalos and Jha, “Complexity
of Uniqueness and Local Search in
Quadratic 0–1 Programming” (1992).

[Lucas, 2014] contains a wide-range of well-known problems in

their QUBO formulations.

The energy function H(x) in the QUBO formulation is a quadratic

form determined by the QUBO matrix Q

H(x) = xTQx. (2.7)

The variables xi ∈ {0, 1} are binary. Since x2
i = xi, H can be divided

into two sums consisting of linear variables and quadratic variables

H(x) = ∑
i

Qixi + ∑
i,j>i

xiQijxj. (2.8)

Qi = Qii are the diagonal elements of the QUBO matrix Q.

Figure 2.2: Photograph of Ernst Ising
in Hamburg, 1925. From [T. Ising et al.,
2017]

The constraint j > i is simply a convention and not strictly

necessary. Since xiQijxj = xjQijxi, we can set Qji to zero for j > i

and move the value to Qij → Qij + Qji. The result is an upper

triangle matrix Q that is consistent across individual works, rather

than deciding how to distribute Qij + Qji over the two transposed

matrix elements.

2.2 Hardware implementation

Q is the data structure used to program D-Wave12 but the underly-
12 D-Wave Systems Inc., D-Wave Docu-
mentation

ing system is a generalized13,14,15 Ising system with Hamiltonian 13 Originally, Ising models were non-
generalized, meaning they only ac-
counted for interactions between
nearest neighbors.

14 E. Ising, “Beitrag zur Theorie des
Ferromagnetismus” (1925).
15 Onsager, “Crystal Statistics. I. A
Two-Dimensional Model with an
Order-Disorder Transition” (1944).

HIsing = ∑
i

hiσ
(z)
i + ∑

i,j>i
Jijσ

(z)
i σ

(z)
j , (2.9)

where i and j are indices for the variables in the system, hi are

the qubit biases and Jij are the coupling strengths. Both xTQx

and HIsing can encode the same problem. (A.18) in the appendix
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demonstrates how to convert {Qin} to {hi, Jij} by transforming

xi → si = 2xi − 1 ∈ {1,−1}.

D-Wave’s qubits are superconducting quantum-interference

device (SQUID) flux qubits and are described by the initial Hamil-

tonian proportional to H0 with no external applied flux. Once exter-

nal fluxes Φ(x)
i are applied to the qubits and an external flux ΦCCJJ

is applied to all compound-compound Josephson-junction (CCJJ)

structures, the Hamiltonian develops according to H(t) in (2.3). The

hi are proportional to ΦCCJJ(t)Φ
(x)
i (t) and the Jij are proportional to

the maximum mutual inductance MAFM generated by the couplers

between qubits i and j and proportional to the flux ΦCCJJ(t).16,17,1816 D-Wave Systems Inc., Annealing
Implementation and Controls.
17 Harris et al., “Experimental Inves-
tigation of an Eight-Qubit Unit Cell
in a Superconducting Optimization
Processor” (2010).
18 Johnson et al., “A Scalable Con-
trol System for a Superconducting
Adiabatic Quantum Optimization
Processor” (2010). 2.2.1 QPU topology

Figure 2.3: Unit cell from Chimera
architecture. Shown are eight qubits.
Within the unit cell, vertical qubits
only couple with horizontal qubits
and vice versa. Picture from [ D-Wave
Systems Inc., D-Wave Documentation ].

Connectivity between qubits is constrained on physical quantum

annealers. When mapping a qubit bias hi to a physical qubit i on

a problem with nh variables, we can only assign a finite number of

interaction strengths Jij to qubit i - one for each of this qubit’s cou-

plers. In addition, the connections are limited to adjacent physical

qubits located next to qubit i rather than allowing connections to

arbitrary qubits j. Figure 2.3 shows a unit cell that consists of eight

qubits and visualizes the constrained connectivity. The chip ar-

ranges the unit cells in a 8 × 8 grid of unit cells as shown in Fig. 2.4.

Therefore, numerous problems cannot be directly mapped onto a

graph of physical qubits. Such a mapping is referred to as an embed-

ding. Moreover, even if such a mapping were possible, discovering

an optimal mapping constitutes a challenge in itself and is typically

an NP-hard problem.19,20

19 D-Wave Systems Inc., D-Wave QPU
Architecture: Topologies.
20 Bunyk et al., “Architectural Con-
siderations in the Design of a Su-
perconducting Quantum Annealing
Processor” (2014).

To address this challenge, we combine several qubits i, j, k, · · · by

coupling them to a single logical qubit called a chain. We achieve

this by assigning couplings Jij, Jjk, · · · = −Jchain between those

qubits. These chain couplings are then included in the Hamiltonian

H = Hproblem − ∑
i,j∈chain

Jchainσ
(z)
i σ

(z)
j , (2.10)

and attempt to correlate the chained qubits so strongly, that they

stay synchronized and thus form a logical qubit.

One can estimate a chain strength by assuming a uniform dis-

tribution of ‘torque’ and compensating accordingly. The coupling



theory and method 9

strength in this uniform torque compensation (UTC) model is

Jutc = k
√
⟨J2

ij⟩
√
⟨ni⟩ (2.11)

= k

√√√√∑i,j>i J2
ij

1
2 ∑i ni

√
1
2 ∑i ni

nh
(2.12)

= k

√
∑i,j>i J2

ij

nh
, (2.13)

Figure 2.4: Microphotograph of a D-
Wave processor chip. Picture shows
8 × 8 unit cells with edges that are
335 µm long. Picture and information
from [Bunyk et al., Aug. 2014].

where ni are the number of non-zero interactions of qubit i and nh

is the number of variables. k is a constant and D-Wave quantum

annealers set it to
√

2 by default

Jdef = Jutc|k=√
2. (2.14)

This compensation is not intended to provide an accurate estimate

and D-Wave recommends trying out k-values between 0.5 < k <

2.21,22 21 Djidjev, “Logical Qubit Implementa-
tion for Quantum Annealing” (2023).
22 uniform_torque_compensation

method in [ D-Wave Systems Inc.,
D-Wave Documentation ]

An optimal embedding and chain strength must be estimated

through experimentation, as discussed in chapter 4.23 The chain

23 Willsch et al., “Benchmarking Ad-
vantage and D-Wave 2000Q Quantum
Annealers with Exact Cover Problems”
(2022).

strength should be sufficiently high to ensure that the physical

qubits that make up the logical qubit reliably maintain the same

value during the annealing process. The event of those constituent

values changing is called a chain break. In principle, if Jchain is

sufficiently large relative to maxij |Jij|, then it is guaranteed that the

chains do not break.

Although that is true, we should not select an excessively large

chain strength due to the scaling down of coupling strengths Jij by

auto-scaling, as described in section 2.2.2 below. Chapter 4 confirms

that the optimal chain strength, Jchain, can be significantly smaller

than relative chain strengths Jchain greater than one. Therefore, it

is necessary to search for the optimal balance between reducing

chain breakage probability and not affecting the Ising dynamics of

Hproblem.24 24 D-Wave Systems Inc., Programming
the D-Wave QPU: Setting the Chain
Strength (2020).

2.2.2 Auto-scaling of coefficients

The D-Wave QPUs are limited to assigning coupling strengths

within a specific range, which corresponds to the maximum achiev-

able physical interaction strengths. For the Advantage QPU, the

h-range is between −4 and 4, and the J-range is between −1 and 1.

If any values of hi, Jij, or Jchain fall outside of these ranges, D-Wave

will proportionally scale down all Ising weights, coupling strengths,

and chain strengths until they fit within the range.

Using relative chain strength, obtained by dividing the chain
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strength by the maximum QUBO weight, is preferable to using

absolute chain strength due to auto-scaling.25 It is important to25 Governing the physics of the device,
one could argue that an absolute
chain strength is meaningless without
knowledge about the maximum
absolute QUBO coefficient.

be aware of auto-scaling because weights that are too small get

scaled down to negligible values smaller than the chip’s realizable

precision. The QUBO coefficients will always be analysed to ensure

that the coupling strengths do not become too weak. Apart from

that, auto-scaling occurs in the background and will not affect the

presentation of results.

2.2.3 Statistical nature

The probabilistic approach is a fundamental aspect of quantum

computing. Unlike traditional computing methods that aim to solve

problems directly, quantum annealers sample multiple solution

candidates. Therefore, they do not guarantee a unique solution but

instead offer a range of potential solutions, of which typically only

a portion of them are optimal or nearly optimal for a given task.

The potential solutions for landscapes are vast and varied, and it

is not always easy to distinguish between optimal and near-optimal

solutions. Furthermore, noise and error rates highlight the need

for a statistical interpretation of results. To compare performance,

we must rely on statistical metrics such as success probabilities. In

optimization problems or similar, the statistical nature may even

offer advantages, as traditional algorithms may have difficulty

escaping local optima, while a quantum annealer could perform a

more comprehensive exploration of the solution space.

2.3 Discrete Poisson equation

This section explains the partial differential equation (PDE) the

work is based on. The choice of this particular problem is explained

in chapter 1. In summary, we have adopted a reductionist approach

to solving linear systems of equations (LSEs) and open up the result

to an audience not too versed with higher level physics problems.

The discrete Poisson equation is an ideal subject for this matter,

as it is a highly sparse LSE. The formulation of gate-based encod-

ing is a direct result of this reductionist approach and the simple

structure of the discrete laplace operator.

Figure 2.5: Drawing of Siméon Denis
Poisson. Public domain

2.3.1 The Poisson equation

In electrostatics, the charge and fields do not vary with time. This

explains why the electric field E is the gradient of of the electro-
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static potential Φ

E = −∇Φ. (2.15)

The electrostatic potential Φ is determined through a partial differ-

ential equation (PDE)

∇2Φ = − ρ

ϵ0
(2.16)

called Poisson equation. The electrostatic charge density is denoted

by ρ = ρ(x), and the constant ϵ0 ≈ 8.854 × 10−12 is called the

permittivity of free space.26 26 Jackson, Classical Electrodynamics
(2021).

2.3.2 Boundary conditions

We consider x-domains that span the interval [0, 1] throughout

the thesis.27 Dirichlet boundary conditions are employed, and 27 The results can easily be transformed
to arbitrary length scales by defining a
unit of length.hence (2.16) is solved for x ∈ (0, 1). Φ(0) and Φ(1) are fixed as part

of the problem scenario.

The thesis is built upon the Laplace equation with ρ(x) = 0. This

implies that, in one dimension, the problems correspond to an ideal

plate capacitor, wherein the plates at x = 0 and x = 1 have infinite

size and there is no charge in-between. The Laplace equation yields

solutions Φ(x), that are linear, since the second derivative vanishes.

Figure 2.6: Drawings of Peter Gustav
Lejeune Dirichlet and Pierre-Simon
Laplace. Public domain

The scalar potential Φ is not uniquely defined, since a constant

can be added to Φ on the right-hand-side of (2.15) without having

an effect on physical quantities such as the electric field E or the

potential difference Φ(x0) − Φ(x1). As a result, problems with

arbitrary values Φ(0) = Φ0 and Φ(1) = Φ1 can be reduced to a case

where Φ(0) = 0 and Φ(1) = V0 ≡ Φ1 − Φ0.

Therefore, the solution for any Laplace problem ∇2Φ = 0 is

Φ(x) = V0x. (2.17)

2.3.3 Finite difference method

Computed solutions are necessarily numerical, hence we discretize

the space domain onto a finite grid. This is achieved by dividing

it into a set of nx > 2 equidistant points with a spacing of ∆x ≡
1/(nx − 1). We refer to nx as the x-resolution, and it is our integer

variable that predominantly declares the problem scale.28 28 Sometimes it can be confusing
whether the word resolution refers
to ∆x or nx . Here, the word is used
exclusively as it is used with displays
and images. A high resolution means a
high number of pixels nx .

nx =

(
Resolution

in x

)
(2.18)

Consequently,

x ∈ [0, 1] ∩ (∆x Z) = {0, ∆x, 2∆x, · · · , 1} . (2.19)
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As such, we can obtain a numerical solution in the form of a vector

Φ, namely

Φ(x) → Φ ≡



Φ(0)

Φ(∆x)

Φ(2∆x)
...

Φ(1)


. (2.20)

Our main focus is not on the continuous Poisson equation, nor

shall we allocate considerable time for comparing discrete and

continuous PDE solutions. Nevertheless, in several of our problem

scenarios, we discover that the solution for the discrete Poisson

equation corresponds to that of the continuous Poisson equation,

because we primarily analyse problems with linear solutions such

as (2.17).

We proceed to derive the discrete Poisson equation by using the

second-order central difference

− ρ

ϵ0
=

d2Φ
dx2 (2.21)

= lim
∆x→0

d
dx

Φ(x + ∆x/2)− Φ(x − ∆x/2)
∆x

(2.22)

= lim
∆x→0

Φ(x + ∆x)− 2Φ(x) + Φ(x − ∆x)
∆x2 . (2.23)

By omitting the limit in (2.23) and inserting the discretization (2.19),

we can derive the discrete Poisson equation

−Φk−1 + 2Φk − Φk+1 = ρk/ε . (2.24)

In this equation, ρk = ρ(k∆x) and Φk = Φ(k∆x) is the k-th com-

ponent in (2.20). The ρk are expressed in terms of the constant ε,

which serves as a unit and can be calculated by the equation

ε ≡ ϵ0

∆x2 = ϵ0(nx − 1). (2.25)

The final step is to convert the linear system of equations (LSE)

from (2.24) into matrix form

DΦ = ρ, (2.26)
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with D and ρ given by

1 0 0 0 0

−1 2 −1 . . . 0 0

0 −1 2 0 0
...

. . .

0 0 0 2 −1

0 0 0 0 1





Φ0

Φ1

Φ2
...

Φnx−2

Φnx−1


=



0

ρ1/ε

ρ2/ε
...

ρnx−2/ε

V0


. (2.27)

We omit ε from calculations by setting it to one. Our algorithms

deal with the ρk in units of ε.

2.3.4 Discrete problem scenario

After obtaining the discrete Poisson equation (2.27), we initially

examine simple problem scenarios before determining the impact

of increased complexity. This approach enables us to optimize the

encoding to identify ideal scenarios and calibrate the analysis.29 29 This becomes clearer at the end
of the section. Figure 2.7 enables an
analogy with colors. Calibrating the
analysis is like testing out a color
palette. This approach makes use of
the full encoding space the same way
as testing as many colors as possible
while maximizing the distinctiveness.

The easiest problem we can solve is when ρ = 0 and Φ(0) =

Φ(1) is a constant, which we denote by V0. Then the differential

equation and its solutions take a simple form in (2.28).

DΦ =



V0

0
...

0

V0


⇔ Φ =



V0

V0
...

V0

V0


. (2.28)

This solution is referred to as the constant solution.

Due to the gauge invariance of Φ that we discussed in subsec-

tion 2.3.2 we can set V0 to zero, and thus, obtain the trivial solution.

Obtaining the trivial solution is easier for a human in comparison

to the constant solution, but this may not necessarily be the case

with a quantum annealer.30 Nonetheless, deductive verification is
30 Our reductionist approach could
make this desirable. After all, we
made the claim that problems easy
for humans are not necessarily easy
for quantum annealers. But this might
just be a bit too easy. Or in physicist’s
terms: A problem with a solution
where every qubit is off could lead to
systematic deviations, or short, a bias.
Instead, it seems prudent to try and
balance out the solution variables in an
attempt to avoid a bias.

necessary during the analysis. Physically speaking, the constant

solution models the application of a two-sided bias to an ideal plate

capacitor. Therefore, the solution is a constant electrostatic potential

Φ with a zero electric field strength E between the plates.

To increase the complexity, we will examine a situation wherein

there is a one-sided bias, specifically ρ = Φ(0) = 0 and Φ(1) = V0.
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As a consequence, the differential equation and its solution become

DΦ =



0

0
...

0

V0


⇔ Φ =



0
1

nx−1 V0
...

nx−2
nx−1 V0

V0


. (2.29)

W.l.o.g. we select the voltage unit to be

[Φ] = ∆xV0 = 1 (2.30)

and streamline the problem to

Φ =



0

1

2
...

nx − 2

nx − 1


, (2.31)

which we call the balanced solution.31 Fig. 2.7 shows the discrete31 This will be the solution we search
for throughout the analysis. solutions for 3 ≤ nx ≤ 9 with the continuous solution in the

background for comparison.

Figure 2.7: Electrostatic potential
Φi for discrete Laplace problem
with resolutions nx of 3 to 9. The
background is colored using the
continuous Laplace equation. The top
and bottom bands for x ≥ 1 and x ≤ 0
are fixed using Dirichlet boundary
conditions. The problem corresponds
to an infinite plate capacitor with a
one-sided bias of V0 applied to the
plate at x = 0.
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There is no loss of generality by converting the solution of the

problem to Φk ∈ {0, 1, · · · }, as we can remove information about

the Φ-resolution by choosing a simple unit factor and we can adjust

the offset {Φk} by adding a constant to Φ. On the other hand,

there are some benefits. In these relatively straightforward problem

scenarios, we avoid unnecessary complexities such as having to

approximate non-integer solutions to finite precision, or signed
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encoding which extends the binary encoding in section chapter 3

to support negative values. This enables us to encode the problem

and its solution with optimal efficiency - meaning with the fewest

number of bits possible.





3

Binary encoding

3.1 QUBO formulation

As explained in section 2.1.1, in order to obtain initial results, it is

necessary to translate the problem scenario from section 2.3.4 into

a QUBO formulation. Quantum annealers output binary solutions

in the form of a bit string. Therefore, the values of Φk must be

represented by a sequence of binary variables. The resulting bit

string can be decoded into an integer solution.

3.1.1 Binary encoding

A binary representation is denoted by a bit string1,2 1 The binary number system was
studied in Europe centuries ago by
Gottfried Leibniz et al. However,
related works date back to the times of
ancient egypt.
2 Leibniz, “Explication de
l’arithmétique Binaire” (1703).

(xα)2 = (xN−1xN−2 · · · x1x0)2, (3.1)

where N is the number of bits or binary variables xα ∈ {0, 1} that

make up the bit string (xα).

N =

(
Number

of bits

)
(3.2)

N can also be referred to as the encoding length. (3.1) defines a way

to represent integers x ∈ {0, 1, · · · 2N − 1} using N binary variables.

The binary representation of x is given by

x =
N−1

∑
α=0

2αxα, (3.3)

where xα represents the α-th bit of x.

Integer x Bit string (xα)2

0 0002

1 0012

2 0102

3 0112

4 1002

5 1012

6 1102

7 1112

Table 3.1: List of all integers that can
be encoded with a 3-bit string.

3.1.2 Energy function

Latin superscript indices are used to denote the components of a

vector or an array, while Greek subscript indices are used to denote

binary digits.
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The discrete Poisson equation DΦ = ρ can be transformed into

an energy function, since it is equivalent to

0 = H(Φ) ≡ ∥DΦ − ρ∥2. (3.4)

We expand the squared norm

∥DΦ − ρ∥2 = (DΦ − ρ)T(DΦ − ρ) (3.5)

= ΦT DT DΦ − 2ρT DΦ + ρ2 (3.6)

= ∑
ijk

ΦiDkiDkjΦj − 2 ∑
ik

ρkDkiΦi + ρ2 (3.7)

into a quadratic form. Since a QUBO problem must use binary

variables, we insert the binary representation from (3.3),

Φi =
N−1

∑
α=0

2αΦi
α, (3.8)

into (3.7). The result is

H(Φ) = ∑
ijk

∑
αβ

Φi
αQ̃ij

αβΦj
β + const. (3.9)

Although the quadratic form is almost in the required form, the

Q̃ij
αβ contain non-zero coefficients on the lower triangle, which is

conventionally avoided. In addition, quadratic and linear terms

are mixed. To correct this, we divide the sum into terms for which

iα = jβ and terms for which iα ̸= jβ. By using x2 = x for x ∈ {0, 1}For multi-indices iα ≡ (i, α) inequali-
ties are defined hierarchically, meaning
jβ > iα if j > i or if j = i and β > α.

we are able to separate the linear and quadratic terms. This results

in

ΦT DT DΦ = ∑
iα,jβ>iα

(
∑
k

2αDki2βDkj

)
Φi

αΦj
β

+ ∑
iα

(
∑
k
(2αDki)2

)
Φi

α (3.10)

2ρT DΦ =∑
iα

(
2 ∑

k
2αDkiρk

)
Φi

α. (3.11)

The QUBO Hamiltonian (2.8) can be expressed as

H(x) = ∑
iα

Qi
αxi

α + ∑
iα,jβ>iα

xi
αQij

αβxj
β, (3.12)

where multi-indices iα, jβ replace single indices i, j according to

i → (i, α) and j → (j, β). By inserting (3.10) and (3.11) into (3.7) we
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can identify the QUBO coefficients from (3.12), and get

Qi
α = 2α

nx−1

∑
k=0

Dki
(

2αDki − 2ρk
)

(3.13)

Qij
αβ = 2α+β+1

nx−1

∑
k=0

DkiDkj. (3.14)

3.2 Results

To solve the problem, we assign the coefficients in (3.14) to the

QUBO matrix Q, which is used as input to program the quantum

annealer.3 3 D-Wave maintains a python interface
that takes the QUBO coefficients as an
input.

3.2.1 D-Wave performance

We try 10 embeddings and sample 1000 solution candidates each,

using default parameters. The embedding with the highest success

probability is selected. Figure 3.1 shows the success probabilities

with respect to the number of bits N for increasing problem size

nx. The error bars assume an independent binomial distribution
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Figure 3.1: Success probabilities for
binary encoded Laplace problem
with respect to encoding length N.
The shown graphs correspond to
increasing number of grid points nx in
the space discretization. We sampled
for 10 embeddings and selected the
largest success probability. We solved
for the balanced solution Φk = k. Lines
are guides to the eye.

and are not included for the sake of mathematical exactness, but

rather as a rough measure of the uncertainty. To calculate them,

we approximate the observations with a normal distribution based

on the central limit theorem and estimate the success probabilities
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using

p ± z

√
p(1 − p)
nsamples

, (3.15)

where p = nsuccess/nsamples represents the estimator for the success

probability and nsamples is the number of samples. z is the quantile

for a 95% confidence interval, approximately equal to 1.960.

The success probabilities in Fig. 3.1 appear to decrease expo-

nentially as the number of bits N increases for each resolution nx.

The QUBO formulation of the discrete Poisson equation is more

challenging than classical formulations, which is expected given

that the QUBO formulation is NP-hard. The aim is to identify en-

hancements to this challenging problem type, regardless of exist-

ing efficient classical methods. In section 3.2.3, the data is plotted

against the number of binary variables, which essentially refers

to the number of logical qubits required to solve the problem. As

logical qubits are composed of chains of physical qubits, sampling

Φ(x) at only 5 to 10 points in space can be misleading. Instead, the

results cover problems with up to 24 logical qubits, which consist of

2 to 3 physical qubits on average.

Problems that do not yield valid solutions with the given sample

size can still be analysed. Although energies are non-zero, those

with low energies are closer to success on average. Custom metrics,

such as the Hamming distance or the sum of squared differences,

can also be defined. Samples that do not solve the problem are

Figure 3.2: Best sample of electrostatic
potential Φi for binary encoded QUBO
problem with default parameters as
evaluated by energy. Plotted are the
solutions for increasing resolutions
nx up to 16 which is as high as 4 bits
go. Samples up to a 3-bit resolution
of 8 pixels contain correct solutions,
whereas 4-bit resolutions beyond that
do not. Potentials that correspond
to the maximum value that can be
encoded are returned by the quantum
annealer. These are greater than V0
and therefore the color bar spans all 16
channels that can be encoded with 4
bits.

The background is colored using
the continuous Laplace equation.
The top and bottom bands for x ≥ 1
and x ≤ 0 are fixed using Dirichlet
boundary conditions. The problem
corresponds to an infinite plate capaci-
tor with a one-sided bias of V0 applied
to the plate at x = 0.
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evaluated qualitatively by plotting them in comparison with the

reference solution. Figure 3.2 shows the electrostatic potential Φ

plotted as as a function of x against increasing x-resolutions nx. The

solutions are correct for resolutions up to nx = 8. However, for

higher resolutions such as when nx = 11, the lowest energy samples

may have potentials significantly higher than V0. It is worth noting

that the searched solution values lie in the range of 1 to 9, while

the annealer can only output non-negative integer results up to 15.

Therefore, upward deviation is more likely.

Although the best high-resolution solution candidates are in-

valid, there is a clear correlation among the solution variables at

various points of space x. Many of the Φk values appear in batches,

as can be seen with nx values of 11, 15 and 16. Furthermore, the re-

maining solutions exhibit a smooth gradient. This is expected, since

the discrete Laplace operator aims to make each Φk equal with the

average of its nearest neighbours. It is worth noting that resolutions

such as nx = 12 and nx = 15 may produce samples that appear to

be reasonably close approximations of the correct solution.

3.2.2 QUBO coefficients

In (3.13) and (3.14) the QUBO coefficients are expressed in a com-

pact form. However, due to the sparse nature of the discrete Laplace

matrix D, it is recommended to examine the different cases to gain

insight into the structure of the QUBO matrix Q. For i, j not adja-

cent to the boundaries,

Qij
αβ =



0 j < i

0 j = i, β < α

6 · 2α+β − 2 · 2α(−ρi−1 + 2ρi − ρi+1) j = i, β = α

2 · 6 · 2α+β j = i, β > α

−2 · 4 · 2α+β j = i + 1

2 · 2α+β j = i + 2

0 j > i + 2

(3.16)

is obtained.

Figure 3.3 illustrates the QUBO matrix by visualizing the QUBO

coefficients. The equation (3.16) can be related to the visual rep-

resentation of Q in Fig. 3.3. The lower block-triangle is empty by

convention for columns j < i. Figure 3.3 illustrates an empty lower

triangle for β < α, and positive upper triangles for β ≥ α on the

block-diagonal i = j. The upper band of blocks where j = i + 1

is negative. The next band of blocks where j = i + 2 is positive
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Figure 3.3: QUBO matrix for nx = 7
and N = 9. The values of i, j corre-
spond to the x-components of Qij

αβ.
QUBO coefficients for i, j ∈ {0, 6} are
not present since they are fixed by
Dirichlet boundary conditions. The
sub-structure corresponds to the bi-
nary digit enumeration α, β. Exact zero
values are coloured in plain white.
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again. For columns where j > i + 2, the QUBO matrix is zero. The

blocks are 9 × 9 checkerboards coupling the binary digits α, β in

substructures.

Number of
bits N

max
∣∣∣Qij

αβ

∣∣∣
min

∣∣∣Qij
αβ

∣∣∣
1 bit 4
2 bits 16
3 bits 64
8 bits 6.6 × 104

16 bits 4.3 × 109

Table 3.2: Scaling of the largest abso-
lute QUBO coefficients

∣∣∣Qi,i+1
N−1,N−1

∣∣∣
divided by the smallest absolute
QUBO coefficients

∣∣∣Qi,i+2
00

∣∣∣ with respect
to a selection of encoding lengths N.
Values are rounded to two digits.

The quadratic coefficients scale exponentially with respect to

α + β.

Qij
αβ ∈ O

(
2α+β

)
max

∣∣∣Qij
αβ

∣∣∣ ∈ O
(

4N
)

. (3.17)

In Fig. 3.1, only nx = 3 can handle more than 8 bits. This is ex-

pected, since for N = 9 bits the absolute coefficients
∣∣∣Qij

αβ

∣∣∣ can be

off by a factor of 4 · 216 = 262 144. The largest QUBO coefficients

contribute so strongly to the energy function H that the smallest

QUBO coefficients have a negligible effect. This limits the problem

and encoding scope that one can deal with using a binary encoded

QUBO formulation of the Laplace problem.
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Figure 3.4: Maximum QUBO coef-
ficient for binary model vs. encod-
ing length N in bits. At N > 430
we experience overflows with
max

∣∣∣Qi,i+1
N−1,N−1

∣∣∣ = 2 × 4N . 64-bit
floats can go up to approximately
1.80 × 10308, which is indicated in the
figure.

The use of large numbers presents another limitation due to the

possibility of overflow when exponentiation is performed. This ef-

fect only occurs for encoding lengths N that are beyond currently

solvable limits. Nevertheless, caution must be exercised when creat-

ing the model. Figure 3.4 illustrates the largest numbers calculated

and compares them to the limits of relevant data types.
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3.2.3 Number of variables and interactions

By counting the number of QUBO coefficients in (3.16), we can

predict the number of non-zero variables and interactions for a

given problem size nx and number of bits N. With x ∈ {0, 1} fixed,

we solve for nx − 2 integer variables Φi and encode those in N bits

each for a total of

nh = (nx − 2)N. (3.18)

i, j Number of
interactions nJ

j < i 0
j = i (N − 1)N/2
j = i + 1 N2

j = i + 2 N2

j > i 0
Total (5N − 1)N/2

Table 3.3: Number of interactions nJ

per band of blocks j and in total.

The QUBO matrix contains nh(nh − 1)/2 interaction coefficients

in its upper triangle, with many of them being zero. Each of the

nx − 2 integer variables Φi (excluding the boundary) has N2 inter-

actions for j = i + 1, and the same applies for j = i + 2, resulting

in another batch of N2 interactions.4 However, when i = j, only

4 There are N combinations for α and
N combinations for β with each being
arbitrary.

coefficients with α < β are non-zero, resulting in a third batch of

N(N − 1)/2 < N2 interactions. The number of interactions nJ is the

sum of these three batches, resulting in a total of

nJ = (nx − 2)N
5N − 1

2
=

5N − 1
2

nh (3.19)

interactions. Therefore, the number of interactions per qubit is

(5N − 1)/2.

This information can be used to test whether the number of

variables predominantly determines the success probabilities in

Fig. 3.1. To do this, we flatten the (nx, N) information into a single

variable nh = (nx − 2)N and plot the same data points in Fig. 3.5.

The results indicate that problem scenarios with nx > 3 have higher

success probabilities than the problem scenario nx = 3 for the same

number of variables nh. This is due to the fact that the number of

bits N is maximal for nx = 3, since it is equal to the number of

variables nh. Therefore, the number of interactions nJ is larger than

5 10 15 202 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 24

Number of variables nh

0
10−3

10−2

10−1

100

Su
cc

es
s

pr
ob

ab
ili

ty

3

4

5

6

7

8

Sp
ac

e
re

so
lu

ti
on

n x

Figure 3.5: Success probabilities for
binary encoded Laplace problem with
respect to the number of QUBO vari-
ables nh in (3.18). The data points used
are the same as those in Fig. 3.1, where
we sampled for 10 embeddings and
selected the largest success probability.
The solution to the problem scenario
is Φk = k. The lines serve as visual
guides.
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in other cases with the same number of variables nh but fewer bits

N.



4

Parameter tuning

In section 3 default values were used for the annealing parame-

ters. Although we can anticipate that the exponential scaling of the

QUBO coefficients Qij
αβ will be the limiting factor, irrespective of the

annealing parameters, we cannot ascertain the significance of com-

parisons to other QUBO formulations if we use default parameters.

By adjusting the most relevant annealing parameters, we ensure

that heuristic estimates do not limit the potential of one formulation

while another formulation benefits from a fortunate inference.

We conduct grid scans of two pertinent parameters, namely

1. Chain strength Jchain,

2. and annealing time tannealing.

It is important to note that tuning these parameters does not elim-

inate the need for comparing multiple embeddings. Thus, for a

given problem, we prepare a set of embeddings and adjust the rel-

evant parameters specific to those embeddings based on the initial

conditions, scale, and model used.

4.1 Chain strength

In section 2.2.1, we introduced the concept of chain strengths. We

begin by searching for ten minor-embeddings for the given problem

at the smallest problem scale and sample solutions with ten linearly

spaced relative chain strengths. We then increase the problem scale

and repeat the procedure until a solution can no longer be found.

4.1.1 Tuning results

Figure 4.1 illustrates the success probabilities with respect to the

relative chain strength Jchain for different problem scenarios. The

probabilities remain consistent across all chain strengths. Fig-

ure 4.1 indicates a decrease in probabilities towards very low chain
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Figure 4.1: Figure 4.1: Success prob-
abilities for each resolution nx and
number of bits N in terms of binary
encoded chain strength Jchain. The axes
have consistent ticks throughout, as
indicated by the stand-alone axis. The
analysis compared 10 embeddings
with 100 samples per chain strength.
The grid scan covers 10 equidistant
relative chain strengths ranging from
0.1 to 1.0. The shaded area shows
the best embedding for each chain
strength, as well as the worst embed-
ding with a success probability greater
than zero. The average of the non-zero
probabilities is indicated by the thick
black line. The optimal chain strength,
J⋆chain, which is determined by the max-
imum probability for each embedding
and chain strength, is marked by the
vertical orange lines.
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Number of embeddings ne 10
Number of chain strengths ncs 10
Number of samples nsamples 100

min Jchain/ max
∣∣∣Qij

αβ

∣∣∣ 0.1

max Jchain/ max
∣∣∣Qij

αβ

∣∣∣ 1.0

Table 4.1: List of parameters for grid
scan tuning of the chain strength Jchain.

strengths. Further confirmation of this hypothesis requires a more

detailed grid scan. However, we will not pursue the analysis of this

question as it is known that excessively small chain strengths must

result in chain breaks. Our objective is to determine the optimal

chain strength rather than the worst.

For each combination of (nx, N) that results in a non-zero suc-

cess probability, we estimate the optimal chain strength J⋆chain. We

assume that the optimal chain strength is independent of both nx

and N. This assumption, although incorrect, is justified as an ap-

proximation, which is discussed in detail in section 4.1.2. We have

excluded problems with a resolution of nx = 3 as they are near-

trivial and inflate the histogram with sparse-bit-solution grid scans,

especially for N ≥ 10. In other words, we need to optimize the

apparatus to try and solve the problem for higher resolutions nx,

instead of focusing on the number of bits with near-trivial resolu-

tions.

0.0 0.5 1.0

Rel. chain strength Jchain

0

2

4

6

C
ou

nt

〈Jchain〉

Figure 4.2: Histogram of all optimized
chain strengths J⋆chain from tuning pro-
cedure. No binning was performed as
the tuned chain strengths correspond
to the 10 bins. For every problem
scenario (nx , N) with a resolution of
nx > 3 pixels, one chain strength was
selected. 10 embeddings were tried
and 100 samples were produced per
chain strength and per embedding.
The dashed orange line highlights the
arithmetic mean given in equation 4.1.

The optimal chain strength for the Laplace model using binary

encoding is

J⋆chain = 0.38 ± 0.18. (4.1)

The uncertainty is estimated by calculating the standard deviation

of the histogram shown in Fig. 4.2. Although optimizing Jchain

seems to have little influence on the resulting probabilities, there

appears to be a tendency of Jchain to be optimal around [0.2, 0.5].

The following section demonstrates that D-Wave’s estimations

for Jchain far exceed the optimal chain strengths identified in our

analysis.

4.1.2 Comparison with default chain strength

Figure 4.3 displays the optimal chain strength for a given problem

and compares it to the default chain strength (2.13). It can be seen

that the D-Wave estimates are far from optimal. Three points can be

emphasized: (1) Analysis shows that more than N ≥ 10 bits inflate

the tuning results. The problem transitions to a superposition with

the sufficient bit-length (nx, N) = (3, 2), as well as a second prob-
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Figure 4.3: Tuned chain strengths
Jchain with respect to number of bits
N. The lines indicate the UTC model
described in section 2.2.1. For every
problem scenario (nx , N), one chain
strength was selected. 10 embeddings
were tried and 100 samples were
produced per chain strength and per
embedding.

Figure 4.2 shows a histogram of
the distribution for nx > 3. The scaled
UTC model is fitted to the tuned
results for nx ≤ 5 in Fig. 4.4
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lem where all leading digits are set to zero. It is possible that the

second part, which requires all leading digits to be zero, may neces-

sitate very small relative chain strengths. The main analysis should

not be affected by testing solutions with increasing numbers of bits

N. (2) On the other hand, chain strengths estimated with a small N

do seem to aggregate towards our optimized chain strength J⋆chain.

This justifies the cut-off selected in the previous section. (3) Most

importantly, it appears that the default chain-strengths Jdef are con-

sistently too strong.

A regression was performed to estimate the scaling factor and

compute a UTC. The results are presented in Fig. 4.4. For nx = 3,

Figure 4.4: Tuned chain strengths Jchain
with respect to number of bits N for
resolutions up to 5 pixels. The lines
indicate the UTC model described in
section 2.2.1 fitted to the tuned data.
The plots on the bottom show the
residuals J⋆chain − JUTC.

For every problem scenario (nx , N),
one chain strength was selected.
10 embeddings were tried and 100
samples were produced per chain
strength and per embedding.
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the UTC model appears to be a suitable choice due to the clear

negative correlation between J⋆chain and N. However, this does not

seem to hold true for nx > 3. The residuals in Fig. 4.4 indicate

a significant bias. Our aim is to identify areas that merit further

investigation rather than computing a quantitative result.

4.2 Annealing time

The time for one anneal, denoted as tmax, is indicated by the an-

nealing time in Fig. 2.1. The results of the annealing time scan are

included in the appendix in Fig. A.2.1 We will use default anneal- 1 This is because including them in the
main text does not offer significant
benefits and may distract from more
important points.

ing times of 20 µs for the remainder of the thesis.

We perform scans equivalent to the scans for chain strengths.

Number of embeddings ne 10
Number of annealing times nat 10
Number of samples nsamples 10

min tmax/µs 20
max tmax/µs 2000

Table 4.2: List of parameters for grid
scan tuning of the annealing time tmax.

However, there are two differences.

1. Firstly, we do not scan for equidistant annealing times as we

did for chain strengths of 0.1, 0.2, · · · , 1.0. Instead, we scan for

logarithmically spaced annealing times.

2. Secondly, we use only 10 samples per embedding and scanned

annealing time.

The annealing procedure remains unchanged within the scope of

our analysis, regardless of the chain strength used. While a dif-

ferent chain strength may cause the quantum annealer to operate

differently on a physical level, our analysis is not concerned with

these low-level hardware intricacies. In fact, the analysis with one

chain strength cannot be distinguished from an analysis with a

different chain, except by examining resulting metrics such as the

frequency of chain breaks or the resulting distribution of successes.

Annealing time, unlike chain strength, is not simply a setting.

A higher annealing time means that every read will take longer.

Therefore, we must decrease the number of samples nsamples from

100 to only 10. This effect is multiplied, because we perform ne ×
nat × nsamples reads, one per embedding per scanned annealing

time per individual read. Using a larger annealing time may lead to

higher success probabilities per read, but not necessarily per amount

of QPU time.
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This slowdown is important to consider as it can impact the de-

pletion of valuable QPU time and lead to longer analysis times,

potentially even requiring the splitting of jobs into multiple repe-

titions. However, it is important to note that the total slowdown is

not proportional to the annealing time tmax. Increasing the anneal-

ing time by a factor of ten does not result in ten times the amount

of QPU access time or run-time due to overhead. Every job has a

programming time Tp with overhead ∆ added on top. Additionally,

there is a required sampling time Ts that consists of three proce-

dures per anneal:

1. Annealing time tmax,

2. Readout time Tr,

3. And delay time Td.

Each of these procedures contributes nsamples times to the overall

sampling time Ts. The resulting QPU access time T is given by22 D-Wave Systems Inc., Operation and
Timing.

T = Tp + ∆ + Ts(nsamples, tmax, Tr, Td). (4.2)

Although longer annealing times may improve performance per

read, the effect is minimal at best. Therefore, we did not investigate

the performance with higher sample sizes. It is advisable not to in-

vest significant time in research that pre-emptive analysis suggests

may be a dead-end. Further comparisons with different annealing

times would also increase the complexity of the analysis.

There is another caveat with longer annealing times. Quantum

annealing uses quantum effects and tunneling to traverse the en-

ergy landscape and remain in the ground state, thereby discovering

the global minimum of the encoded problem. The question arises,

whether 2 ms anneals even deserve the prefix ‘quantum’, since

anneals that are very slow may result in the determination of the

outcome by decoherence and thermal effects rather than quantum

effects. Although it is worth mentioning, this caveat is ultimately

irrelevant to the questions we are attempting to answer. The de-

vice upon which this research is based is partially a black box. The

physicist’s main interest is to examine the behaviour of the device

and make predictions, rather than determining the cause of its be-

haviour. Explaining the effects that lead to the observed results may

be too complex, especially since we cannot verify or influence the

inner workings of D-Wave quantum annealers due to their propri-

etary nature.

Given the above limitations and drawbacks, and the fact that

our initial analysis with a small sample size did not show any sig-
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nificant improvement, we have decided not to pursue this further.

However, the results are included in section A2 in the appendix.





5

Gate-based encoding

We will now reformulate the QUBO in a way that avoids exponen-

tial scaling of the QUBO coefficients. We do this by giving a set of

independent relations for each variable i and digit α. The relations

can be represented by logical gates, each associated with a QUBO,

thus breaking the problem into many small QUBO problems.

To accomplish this, we will review equation (3.4). First, we

squared the norm and then inserted the binary representations.

The resulting squared sum includes the powers of 2α from the bi-

nary representation (3.3) within the QUBO coefficients Qij
αβ. The

QUBO Hamiltonian has the structure

H =
[
(20[. . . ])Φ0

0 + · · ·+ (22N−2[. . . ])Φnx−1
N−1 (5.1)

+ (20[. . . ])Φ0
0Φ1

0 + · · ·+ (22N−2[. . . ])Φnx−2
N−1 Φnx−1

N−1

]
. (5.2)

The exponential weights within the QUBO coefficients en-

sure that leading digits Φi
N−1, Φi

N−2, etc., which contribute ex-

ponentially to Φi, are also weighed exponentially in the objective

∥DΦ − ρ∥2. However, in attempting to solve the LSE exactly, weigh-

ing leading digits exponentially encounters physical limitations on

today’s hardware. Therefore, it is important to consider alternative

methods for solving the LSE.

The approach is based on the factorization problem, which

requires precise calculations.1,2 To factorise a number using the 1 Andriyash et al., Boosting Integer
Factoring Performance via Quantum
Annealing Offsets (2016).
2 Jiang et al., “Quantum Annealing for
Prime Factorization” (2018).

QUBO formulation, the equation

a × b = p (5.3)

is used. This equation can be considered a linear system of equa-

tions with a only one row and one variable, which can be solved

using binary written multiplication. [Jiang et al., Dec. 5, 2018] also

compared both approaches, one by directly minimizing (p − a × b)2

and another by using multiplication tables.
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Every column of written multiplication forms a set of constraints.

Thus, we transform the problem into a Constraint Satisfaction

Problem (CSP). The constraints are not exponentially weighed,

but rather dependent and connected via ancilla qubits represent-

ing intermediate sum and carry bits used in long multiplication.

Although this approach requires additional ancilla qubits, it is im-

portant to note that these ancilla qubits do not need to be sampled

correctly to obtain a proper solution to the logical problem. Solu-

tions with false ancillas are investigated in section 5.8.

5.1 Constraint Satisfaction Problem

The gate-based encoding approach was developed by attempting to

extract the powers of 2α in front of the QUBO coefficients. The idea

behind the ansatz is represented by the equation

H(x) = ∑
iα,jβ≥iα

xi
α

(
����2α+β+1

nx−1

∑
k=0

DkiDkj

)
xj

β (5.4)

when there is no charge. To achieve the desired outcome, the ob-

jective is no longer stated as a single energy function to minimize.

Instead, the LSE must be examined row by row, and the objectives

associated with each row are minimized individually. Therefore, we

begin again from

DΦ = ρ, (5.5)

without calculating the norm and squaring it. The system consists

of nx − 2 linear conditions, with the boundary conditions determin-

ing Φ0 and Φnx−1.

The aim is to convert the problem into a CSP, consisting of inde-

pendent constraints that must be satisfied, rather than a single loss

function. We concentrate on the i-th components corresponding to

the i-th row of D.

−Φi−1 + 2Φi − Φi+1 = ρi (5.6)

The binary representation (3.3) is inserted into the equation

−
N−1

∑
α=0

2αΦi−1
α + 2

N−1

∑
α=0

2αΦi
α −

N−1

∑
α=0

2αΦi+1
α =

N−1

∑
α=0

2αρi
α (5.7)



gate-based encoding 35

and the resulting values are sorted by powers of 2α to yield[
20 × (−Φi−1

0 + 2Φi
0 − Φi+1

0 )

+ 21 × (−Φi−1
1 + 2Φi

1 − Φi+1
1 )

...

+ 2N−1 × (−Φi−1
N−1 + 2Φi

N−1 − Φi+1
N−1)

] =

[
20 × (ρi

0)

+ 21 × (ρi
1)

...

+ 2N−1 × (ρi
N−1)

]
.

(5.8)

It is important to note that the brackets do not define QUBO co-

efficients. Instead, if the brackets are equal on both sides of equa-

tion (5.8), then the LSE is satisfied.3 The powers of 2 are outside 3 This is not a vector but instead a one-
dimensional equation. The brackets
are linearly dependent.the brackets, which allows the gate-based method to bypass the

exponential scaling when formulating the QUBO problem.

There is one caveat: The brackets on the RHS are binary, while

the brackets on the LHS,

−Φi−1
α + 2Φi

α − Φi+1
α ∈ {−2,−1, 0, 1, 2}, (5.9)

may not necessarily be binary since they are a sum of binary vari-

ables. Therefore, the equation (5.8) requires the use of ancilla

qubits. Any non-binary brackets equal to 2 will be carried over

to the next bracket and negative brackets will need to borrow from

the next bracket, exactly as in written addition and subtraction.

However, before we identify the constraints, we first use the

identity 2 × (0 ΦN−1 · · ·Φ2Φ1Φ0)2 = (ΦN−1 · · ·Φ1Φ0 0)2 to simplify

equation (5.8) by shifting the 2Φi
α terms to the next bracket.[

20 × (−Φi−1
0 − Φi+1

0 )

+ 21 × (−Φi−1
1 + Φi

0 − Φi+1
1 )

...

+ 2N−1 × (−Φi−1
N−1 + Φi

N−2 − Φi+1
N−1)

+ 2N × (Φi
N−1)

]
=

[
20 × (ρi

0)

+ 21 × (ρi
1)

...

+ 2N−1 × (ρi
N−1)

+ 2N × (ρi
N)
]
.

(5.10)

5.1.1 Sum and carry ancillas

In order for the LSE to hold true, the brackets associated with 20

in the first row of equation (5.10) must be equal. This results in the

equation

Φi−1
0 ⊕ Φi+1

0
!
= ρi

0, (5.11)

which represents the first constraint for the CSP in each row i. We

use the operator ⊕ to denote addition modulo 2 as explained in

Tab.5.1.

a b carry sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 5.1: Truth table for addition
modulo 2 ⊕. sum = a ⊕ b is the sum-bit
and carry = a ∧ b is the carry-bit.This procedure can be repeated for each digit α. However, if
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Φi−1
0 + Φi+1

0 = 2 = (10)2, then the sum is carried over to the next

digit 21 × (· · · ). Since ρi
0 = 0, it could be argued that both variables

are always equal to zero. However, for rows i = 1 and i = nx − 2,

one of the two variables could be fixed by a boundary condition.

Therefore, it is necessary to consider the possibility of the sum

carrying over.

Fortunately, it is possible to express this algebraically by intro-

ducing sum and carry ancillary variables that follow

Φi−1
0 + Φi+1

0 = 2ci
1 + si

0 ∈ {0, 1, 2}. (5.12)

Using (5.12), we can express the constraint that the next digit ρi
1

must satisfy as

−Φi−1
1 + Φi

0 − Φi+1
1 − ci

1
!
= ρi

1. (5.13)

The minus sign in front of ci
1 is a result of the minus sign in ρi

0
!
=

−(Φi−1 ⊕ Φi+1). The subtrahends can be combined into a sum

ancilla

si
1 ≡

(
Φi−1

1 ⊕ Φi+1
)
⊕ ci

1. (5.14)

Remember that the sums can carry over to the next bracket 22 if

non-binary. The equation

Φi−1
α + Φi+1

α + ci
α

!
= 2ci

α+1 + si
α (5.15)

defines the ancillas for sum and carry for any given value of α. It is

worth noting how the sum in (5.15) fits neatly into the two binary

variables ci
α+1 and si

α since it is at most equal to 3 = (11)2.

5.1.2 Borrow ancilla

Equation (5.13) is now represented as

Φi
0 − si

1
!
= ρi

1. (5.16)

If this constraint is met, the i-th linear equation is satisfied for digits

ρi
1 and ρi

0. It is possible to continue this approach digit by digit

until all digits have a set of constraints. However, if ρi
1 = 1 and

si
1 = 1, then equation (5.16) can only be satisfied if Φi

0 = 2, which

is not a binary value. This is invalid, so the subtraction (5.16) has to

borrow from the 22 × (· · · ) bracket.

The constraint resulting from this can be expressed algebraically

as

Φi
0 − si

1
!
= ρi

1 − 2bi
2. (5.17)
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The borrow bit, represented by bi
2, can be used to borrow 2 from the

next bracket if si
1 = 1 and ρi

1 = 1, thereby changing the RHS from 1

to −1. The equation

Φi
α−1 − si

α − bi
α

!
= ρi

α − 2bi
α+1 (5.18)

defines the borrow ancilla for any given positive value of α.

5.2 Written arithmetic

The constraints are summarised in equations (5.19) to (5.29).

Φ0
α = Φ(x = 0)α (5.19)

Φnx−1
α = Φ(x = 1)α (5.20)

(5.21)

α = 0 ρi
0

!
= Φi−1

0 ⊕ Φi+1
0 (5.22)

ρi
0 + 2ci

1
!
= Φi−1

0 + Φi+1
0 (5.23)

(5.24)

α > 0 si
α

!
=
(

Φi−1
α ⊕ Φi+1

α

)
⊕ ci

α (5.25)

si
α + 2ci

α+1
!
= Φi−1

α + Φi+1
α + ci

α (5.26)

bi
1 = 0 (5.27)

ρi
α

!
=
(

Φi
α−1 ⊖ si

α

)
⊖ bi

α (5.28)

ρi
α − 2bi

α+1
!
= Φi

α−1 − si
α − bi

α (5.29)

The variables can be arranged in a way similar to written addition

and multiplication to illustrate the concept. Table 5.2 displays the

addition table. The table includes columns for higher digits α = N

0 ΦN−1 ΦN−2 Φ1 Φ0 0
0 Φ−

N−1 Φ−
2 Φ−

1 Φ−
0

+ 0 Φ+
N−1 Φ+

2 Φ+
1 Φ+

0
+ 0 cN cN−1 c2 c1

− sN sN−1 s2 s1 s0

− bN+1 bN bN−1 b2 b1

ρN+1 ρN ρN−1 ρ2 ρ1 ρ0

Table 5.2: Addition table for row i of
LSE.

and even α = N + 1, since ρ could require more digits than Φ.

For the column with ρ0, no sum ancilla is necessary as 0 ⊖ s0 =

0 ⊕ s0 = ρ0.

s0 = ρ0 fixed. (5.30)

Additionally, the borrow ancilla is unnecessary since b1 = 1 if and
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only if ρ0 = s0 = 1.

b1 = ρ0 fixed. (5.31)

However, when α equals N, there is no need to perform a sum or

account for a new part to carry over to column α = N + 1, since

sN = 0 + 0 + cN .

sN = cN fixed. (5.32)

The last column corresponds to 0 ⊖ (0 + bN+1) = ρN+1. This is

equivalent to

bN+1 = ρN+1 fixed. (5.33)

The fixed variables are struck through in Tab. 5.3.

Table 5.3: Addition table for row i
of LSE. Fixed variables are struck
through.

0 ΦN−1 ΦN−2 Φ1 Φ0 0
0 Φ−

N−1 Φ−
2 Φ−

1 Φ−
0

+ 0 Φ+
N−1 Φ+

2 Φ+
1 Φ+

0
+ 0 ��cN cN−1 c2 c1

− sN sN−1 s2 s1 ��s0

− ���bN+1 bN bN−1 b2 ��b1

ρN+1 ρN ρN−1 ρ2 ρ1 ρ0

When α equals 0, a single binary addition links the variables

Φi−1
0 , Φi+1

0 , and the output carry ci
1. The constraint consists of

two algebraic equations, but the equation Φi−1
0 ⊕ Φi+1

0 = ρi
0 is

dependent because ρi
0 is fixed and the Φ0-variables are constrained

via subtraction at the next digit α. For α values ranging from 1

to N − 1, there is a binary addition and subtraction that connect

the aforementioned Φ variables with sum, carry, and borrow bits.

When α equals N, only a subtraction is performed by connecting

variables Φi
N−1, si

N and bi
N . In this case, the algebraic equation

connecting the input with the borrow bN+1 can be disregarded,

as will be explained in section 5.2.1. For each i, there are a total of

4N − 2 constraints and variables, resulting in

nh = (nx − 2)(4N − 2) (5.34)

variables in the QUBO problem.4 However, carries and borrows4 Compare with nh = (nx − 2)N in
section 3.2.3. may not always be unique for valid, zero-energy solutions, and may

swap roles. This suggests the possibility of ancillary constraints that

are not independent.

5.2.1 Signed encoding

Equation (5.33) demonstrates that bN+1 is fixed to the charge den-

sity, which is equal to zero in the present problem scenario. This

section could be concluded here. However, a question arises: What
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if bN+1 = 1? This would imply borrowing from the 2N+1s. The

outcome would be

ρ = (ρα) = 2N+1 × (0 − 1) + (ρNρN−1 · · · ρ2ρ1ρ0)

= −2N+1 +
N

∑
α=0

2αρα. (5.35)

In equation (5.35), the expression −2N+1 is obtained by subtract-

ing 1 from the 2N+1-minuend, which is equal to 0, as is common

practice in written subtraction. The result requires signed integer

binary encoding to express the charge density ρ and ρN+1. Equa-

tion (5.35) corresponds to the two’s complement representation of

ρ.5 The most significant bit determines the sign of the number and 5 Baugh and Wooley, “A Two’s Com-
plement Parallel Array Multiplication
Algorithm” (1973).is sometimes called the sign bit. Although the implementation sup-

ports signed integers, for the purposes of this thesis, we will use

unsigned integer binary encoding. The problems introduced in sec-

tion subsection 2.3.4 do not involve charges. Therefore, since ρα = 0

for all α, bN+1 = 0 must be fixed. This ensures that the resulting

finite difference is never negative in the problem scenarios.

Furthermore, all Φ values are non-negative, provided that the

biases Φ(0) and Φ(1) are also non-negative. Negative Φ values can

only occur when a negative bias Φ0 or Φnx−1 is applied. However,

even in such cases, the subtraction and bN+1 are determined solely

by the chosen problem. Thus, we conclude that for any Laplace

problem, s0, b1, and bN+1 are equal to zero, resulting in the subtrac-

tion being simplified to the addition table 5.4.

ΦN−1 ΦN−2 Φ1 Φ0

Φ−
N−1 Φ−

2 Φ−
1 Φ−

0
+ Φ+

N−1 Φ+
2 Φ+

1 Φ+
0

+ cN−1 c2 c1

− cN sN−1 s2 s1 ρ0

− 0 bN bN−1 b2 ρ0

0 ρN ρN−1 ρ2 ρ1

Table 5.4: Addition table with fixed
variables stated explicitly.

When considering the encoding of ρ, it is necessary to deter-

mine the number of bits needed, given a solution Φ that requires

at least N bits to be encoded. In the case of unsigned integer bi-

nary encoding, the value of ρi is maximal if Φi is maximal and

Φi−1 = Φi+1 = 0, as shown in equation (2.24). In this scenario,

ρi = 2 × Φi. Thus, ρ is identical to Φ, except for the addition of a

trailing zero. Therefore, it is possible to encode the ρ-components

using at most N + 1 bits for a given Φ with N-bit components.



40 quantum annealers and partial differential equations

5.3 Logical gatesz

carry

x
⊕

sum

y

x y z carry sum

0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Figure 5.1: (Top) Circuit diagram of
full-adder gate. (Bottom) Truth table of
full-adder gate.

x, y and z are the input bits. The
outputs bits are sum = (x ⊕ y)⊕ z and
the carry = (x ∧ y) ∨ (y ∧ z).

Equation (5.15) defines a full-adder gate algebraically. It can be

implemented by cascading two half-adder gates and connecting the

carry outputs with an OR-gate.6 A half-adder gate computes the

6 Nielsen and Chuang, Quantum
Computation and Quantum Information
(2010).

two outputs carry and sum in parallel

carry = x ∧ y = AND(x, y) sum = x ⊕ y = XOR(x, y). (5.36)

A QUBO formulation can be derived by rearranging the terms

in (5.15) to one side, resulting in

0 !
= x + y + z − s − 2c, (5.37)

and then squaring the expression:

0 = (x + y + z − s − 2c)2. (5.38)

The minimum of the squared expression corresponds to valid val-

ues for x, y, z, sum, and carry. The QUBO form

0 =
(

x y z s c
)

Q⊕



x

y

z

s

c


(5.39)

Q⊕ =



1 2 2 −2 −4

0 1 2 −2 −4

0 0 1 −2 −4

0 0 0 1 4

0 0 0 0 4


(5.40)

z

borrow

x
⊖

difference

y

x y z borrow diff.

0 0 0 0 0
1 0 0 0 1
0 1 0 1 1
1 1 0 0 0
0 0 1 1 1
1 0 1 0 0
0 1 1 1 0
1 1 1 1 1

Figure 5.2: (Top) Circuit diagram of
full-subtractor gate. (Bottom) Truth
table of full-subtractor gate.

x is the bit representing the min-
uend and y and z are the input
bits representing the subtrahends.
difference = (x ⊖ y)⊖ z and borrow

are the output bits.

is derived by multiplying out the expression. The process for ob-

taining the QUBO form of a full subtractor gate is the same, except

for a different sign, resulting in

Q⊖ =



1 −2 −2 −2 4

0 1 2 2 −4

0 0 1 2 −4

0 0 0 1 −4

0 0 0 0 4


. (5.41)

The aim of this section is to design a circuit that performs arith-

metic operations for each line in D of (2.27). Let us consider row i.
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Doubling Φi is straightforward in binary encoding,

(
2Φi

)
α
=

0 for α = 0(
Φi)

α−1 for α > 0
. (5.42)

Φi 2×
−

ρi

Φi−1

+
Φi+1

Figure 5.3: Sketch of circuit that repre-
sents the CSP. 2×-gate is merely a shift
in indices. + and − are adder and
subtractor gates acting on registers. It
depicts row i of the discrete Poisson
equation −Φi−1 + 2Φi − Φi+1 = ρi .

Next, we need to sum the Φi-neighbors, namely Φi−1 and Φi+1, and

then subtract them from 2Φi. The circuit idea follows the schematic

explanation provided in section 5.2 and is illustrated in Fig. 5.3. The

resulting circuit consists of full adder and full subtractor gates, as

illustrated in Fig. 5.4.

5.4 QUBO coefficients

The QUBO matrix is the sum of all sub-QUBO matrices. It is repre-

sented by the equation

H = ∑
i

Hi, (5.43)

where Hi = ∑α(Hi
⊕(α) + Hi

⊖(α)).

Figure 5.5 visualises the QUBO coefficients. The coefficients no

longer exhibit exponential scaling. However, the use of ancilla vari-

ables is required, resulting in the QUBO matrix having more than

nh = (nx − 2)N rows and columns. Although this is a disadvantage

of the gate-based encoding approach, it is important to note that

the ancilla variables do not need to be sampled correctly to solve

the original problem. Section 5.8 investigates false ancillas in more

detail. It is worth noting that the gate-based QUBO matrix has less

connectivity than the binary encoded QUBO matrix. Therefore,

gate-based problems require more qubits, but not necessarily more

interactions overall. In any case, for a sufficiently high number of

bits N, this results in fewer interactions per qubit.

s1

s2

sN−2

sN−1

cN

Φ−
0 ⊕

ρ0

Φ+
0 Φ0

⊖
ρ1

Φ−
1 ⊕

Φ+
1 Φ1

⊖
ρ2

Φ−
N−2 ⊕

Φ+
N−2 ΦN−2

⊖
ρN−1

Φ−
N−1 ⊕

Φ+
N−1 ΦN−1

⊖
ρN

0

Figure 5.4: Full circuit representing
the constraints for row i, namely
−Φ− + 2Φ − Φ+ = ρ, of the discrete
Poisson equation. Superscript indices i
are ommitted and i ± 1 replaced with
±, since we are exclusively dealing
with Φi and its adjacent neighbors
per row i. Subscript indices refer to
the digits α of the unsigned bit string
representation belonging to the digit
associated with 2α.

Gates labeled ⊕ are full-adder gates
explained in Fig. 5.1 and gates labeled
⊖ are full-subtractor gates explained in
Fig. 5.2. carry and borrow bits are not
labeled to avoid overloading the figure.
They belong to the vertical lines on the
left below the adders and right below
the subtractors respectively.

Now that the QUBO coefficients are in a compact range, we will

analyse their distribution. We convert the model to an Ising model,

which governs the physics on a hardware level, rather than a QUBO

model. The non-zero hi and Jij values can only take a discrete set of

values

hi ∈ {−1.5,−1.0,−0.5, 0.5, 1.0, 1.5} ⊂ [−4, 4] (5.44)

Jij ∈ {−1.0,−0.5, 0.5, 1.0} ⊂ [−1, 1]. (5.45)

Upon examining Fig. 5.5, it is apparent that the quadratic QUBO

coefficients are limited to two shades of blue and two shades of

red. The histogram in Fig. 5.6 displays the distribution of these

coefficients. Note that according to equation (A.18) in the appendix,

coupling strengths
∣∣Jij
∣∣ of 1/2 and 1 correspond to

∣∣Qij
∣∣ values of
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Figure 5.5: Gate-based QUBO matrices
Q for a resolution of nx = 7 pixels.
Variables encoded in N = 3 and 9
bits. Off-diagonal values can only be
±2 or ±4 and only diagonals can have
QUBO weights Qi of ±6. Matrices
have nh = (nx − 2)(4N − 2) = 50 and
170 elements respectively as can be
seen in equation 5.34.

2 and 4, respectively. The linear QUBO weights Qi can also take

values of ±6, which corresponds to Ising weights hi of ±3/2.

5.5 Results with default settings

Ten embeddings were tested and 1000 solution candidates were

sampled for each, using default parameters. The embedding with

the highest success probability was selected. Figure 5.7 displays

the success probabilities in relation to the number of bits N for

increasing problem size nx. For comparison, the binary encoding

results from Fig. 3.1 are also included with shaded markers.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Ising weight hi
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Non-zero interaction Jij
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Figure 5.6: Distribution of Ising coef-
ficients hi and Jij for a resolution of
nx = 7 encoded in N = 9 bits. No
binning was performed as the bars
correspond to the possible weights ex-
actly, which can only take those finite
values. We do not plot Jij = 0, since it
would dominate the histogram. These
zero quadratic weights do not have
any coupling, due to the sparse QUBO
matrix Q in Fig. 5.5.
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Figure 5.7: Success probabilities in
relation to the number of bits N
for increasing problem size nx . 10
embeddings were tested and 1000
solution candidates were sampled
for each, using default parameters.
The embedding with the highest
success probability was selected. We
include the data from the binary
encoded QUBO formulation in Fig. 3.1
with shaded colors. For the smallest
resolution nx = 3 the gate-based
data is continued up to very large
numbers of bits N and is continued in
the appendix in Fig. 5.7 for N > 16.
The error correction is the same as in

equation 3.15: p ± z
√

p(1−p)
nsamples

.

In gate-based encoding, probabilities also decay exponentially

with increasing resolution, but they are significantly larger for each

resolution compared to binary encoding. It is important to note

that gate-based encoding with default values cannot provide a

solution for higher resolutions than binary encoding can for the

given sample size. However, for low resolutions of nx = 3, we

obtain solutions for numbers of bits N that are so large that we

have decided not to include them in the figure. To address this,

Fig. A.4 in the appendix continues Fig. 5.7 for N > 16.

Number of embeddings ne 10
Number of chain strengths ncs 10
Number of samples nsamples 100

min Jchain/ max
∣∣Qij

∣∣ 0.1
max Jchain/ max

∣∣Qij
∣∣ 1.0

Table 5.5: List of parameters for grid
scan tuning of the chain strength Jchain
for gate-based encoding. The table is
identical to Tab. 4.1 that lists tuning
parameters for binary encoding.

5.6 Parameter tuning

Parameter tuning did not significantly improve binary encoding

performance. Although gate-based encoding led to higher success

probabilities, this advantage did not translate into higher resolution

solutions. To improve the resolution on the same hardware without

altering the method, annealing parameters were tuned as described
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Figure 5.8: Figure 5.8: Success prob-
abilities for each resolution nx and
number of bits N ≤ 12 in terms of
gate-based chain strength Jchain. The
axes have consistent ticks throughout,
as indicated by the stand-alone axis.
The analysis compared 10 embeddings
with 100 samples per chain strength.
The grid scan covers 10 equidistant
relative chain strengths ranging from
0.1 to 1.0. The shaded area shows
the best embedding for each chain
strength, as well as the worst embed-
ding with a success probability greater
than zero. The average of the non-zero
probabilities is indicated by the thick
black line. The optimal chain strength,
J⋆chain, which is determined by the max-
imum probability for each embedding
and chain strength, is marked by the
vertical orange lines.
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in chapter 4.

We repeat the tuning procedure by searching for ten minor-

embeddings for the given problem at the smallest problem scale.

Samples are produced with ten linearly spaced relative chain

strengths. The procedure is repeated as the problem scale increases

until a solution can no longer be found. Table 5.5 lists the parame-

ters used in the grid scan.

Figure 5.8 shows the success probabilities for various problem

scenarios in relation to the relative chain strength Jchain. The results

differ significantly from those in Fig. 4.1. This time, there is a clear

peak around Jchain = 0.3, indicating an optimal chain strength J⋆chain.

This suggests that higher resolution solutions can be achieved com-

pared to default settings.

0.0 0.5 1.0

Rel. chain strength Jchain

0
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4

6

8

10

12

C
ou

nt

〈Jchain〉

Figure 5.9: Histogram of all optimized
chain strengths J⋆chain from tuning pro-
cedure. No binning was performed as
the tuned chain strengths correspond
to the 10 bins. For every problem
scenario (nx , N) with a resolution of
nx > 3 pixels, one chain strength was
selected. 10 embeddings were tried
and 100 samples were produced per
chain strength and per embedding.
The dashed orange line highlights
the arithmetic mean given in equa-
tion 5.46.

For each combination of (nx, N) that results in a non-zero suc-

cess probability, we estimate the optimal chain strength J⋆chain. We

assume that the optimal chain strength is independent of both nx

and N. The optimal chain strength for the Laplace model using

binary encoding is

J⋆chain = 0.30 ± 0.09. (5.46)

The histogram in Fig. 5.9 shows a sharp peak, indicating that the

uncertainty for the optimal chain strength J⋆chain is significantly

smaller than that discussed in chapter 3.

Figure 5.10 shows the success probabilities achieved by tuning

the chain strength according to equation (5.46). The results demon-

strate a significant improvement, with correct solutions achieved

for resolutions of nx = 9 and nx = 11. However, a correct solution

was not obtained for nx = 8, which can be attributed to the sam-

ple size. A regression was performed to estimate the scaling factor

and compute a UTC. The results are presented in Fig. 5.11. The

UTC model is a suitable approximation even for resolutions greater

than 3 when using gate-based encoding. The residuals appear to be

stochastically distributed.

To conclude the section on tuning, samples that do not solve the

problem are evaluated qualitatively by plotting them in comparison

with the reference solution. Figure 5.12 displays the electrostatic po-

tential Φ as a function of x against increasing x-resolutions nx. The

solutions are now correct up to a resolution of nx = 11, compared

to the previous limit of nx = 8 in Fig. 3.2. The comparison is not

the main focus of this chapter and can be found in chapter 6. It is

worth noting that for nx = 10, a false solution is obtained, which

is, however, a good approximation of the correct solution. Although

there are still solution variables with a potential Φ > V0, the dif-
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Figure 5.10: Success probabilities
in relation to the number of bits N
for increasing problem size nx . 10
embeddings were tested and 1000
solution candidates were sampled
for each, using a chain strength Jchain
of 0.3 taken from equation (5.46).
The embedding with the highest
success probability was selected. We
include the data from the binary
encoded QUBO formulation in Fig. A.1
with shaded colors. For the smallest
resolution nx = 3 the gate-based data
is continued up to very large numbers
of bits N. The error correction is
the same as in equation 3.15: p ±
z
√

p(1−p)
nsamples

.

ference is less significant than was the case with binary encoded

QUBOs in Fig. 3.2.

Once again, a clear correlation is observed among the solution

variables. The solution values are presented in batches or exhibit

a smooth gradient.7 This is expected since the discrete Laplace

7 See Fig. 3.2.

operator sets each Φk equal to the average of its nearest neighbours,

which remains the case regardless of the QUBO formulation. It is

worth noting that the sample data seems to be locally correct.

Additionally, the metric for solutions is based on energy, which

includes false ancillas. Higher resolutions, such as 12 and 13, may

have low energy because most ancilla qubits may be correct. There-

fore, there may be higher energy samples in the data that more

accurately approximate the correct solutions than the lowest en-

ergy samples. Section 5.8 presents a detailed investigation of false

ancillas. Fig. 5.13 displays false solutions with the smallest sum of

squared differences, a metric that is not affected by ancillary data.

5.7 The circuit can be simplified

The circuit formulation was developed from scratch and could

potentially be improved in various ways, some of which may not be

immediately apparent. The resulting model has evolved organically

to its current state. With current knowledge, some simplifications

are possible.
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Figure 5.11: Tuned chain strengths
Jchain with respect to number of bits N
for resolutions up to 5 pixels. The lines
indicate the UTC model described in
section 2.2.1 fitted to the tuned data.
The plots on the bottom show the
residuals J⋆chain − JUTC.

For every problem scenario (nx , N),
one chain strength was selected.
10 embeddings were tried and 100
samples were produced per chain
strength and per embedding.

The circuit can be divided into three components: a trivial com-

ponent and two non-trivial components.

1. The trivial multiplication by 2,

2. a full-adder gate with sum and carry bits

3. and a full-subtractor gate with borrow bits.

The non-trivial part, which includes the adder and subtractor, can

be contracted into a single QUBO. Although the LSE can be split

into several sub-QUBOs, merging the adder and subtractor would

reduce the final number of QUBOs by half. However, this splitting

comes at a cost as the adder and subtractor must be connected us-

ing an ancilla qubit, specifically the sum ancilla. Unfortunately, com-

bining the gates and reducing the number of ancillas by roughly

one third is beyond the already complex scope. However, further

research is justified.

Subtractor gates are not necessary to begin with, even though it

may seem intuitive to use them, since the equation we are trying to

represent with gates is

Φi
α − si

α = ρi
α. (5.47)

The investigated cases have a value of ρ = 0. It is worth noting that

we are not computing the output from an input, i.e. the equation

Φi
α − si

α = 0 (5.48)
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Figure 5.12: Best sample of electrostatic
potential Φi for gate-based QUBO
problem with tuned parameters as
evaluated by energy. A chain strength
Jchain of 0.3 was used with a default
annealing time of 20 µs. Plotted are
the solutions for increasing resolutions
nx up to 16 which is as high as 4 bits
go. Samples up to a resolution nx of 11
pixels contain correct solutions with
the exception of nx = 10. The potential
Φ(x) for a resolution of nx = 13 is
takes a maximum value of 1.25 V0,
which is reflected in the adjustments at
the color bar.

The background is colored using
the continuous Laplace equation.
The top and bottom bands for x ≥ 1
and x ≤ 0 are fixed using Dirichlet
boundary conditions.

is a constraint rather than an input-output relationship.

It is worth noting that the two sub QUBOs per row per digit can

be merged into a larger one. However, for the Laplace equation, a

larger QUBO is not even necessary, since the equation

Φi
α

!
= si

α (5.49)

can be fixed by eliminating the sum ancilla and subtractor gate

entirely.

Due to time constraints, a detailed investigation of this realiza-

tion was not possible. Furthermore, the simplifications would make

it more challenging to explain the concept because the present cir-

cuit directly represents each [−1, 2,−1] row of the discrete Laplace

matrix. Despite adhering to the Laplace equation analytically, the

constructed machine computationally solves the Poisson equation.

Charge densities ρ can be introduced into the problem scenario at

any time. In theory, a quantum annealer is indifferent to whether

the bits are zeroes or ones when solving the Poisson equation.

To elaborate, including non-zero charges a priori does not nec-

essarily increase the difficulty of the problem. In one dimension,

the discrete Poisson problem is linear for ρ = 0 and piecewise lin-

ear between the charges for ρ ̸= 0. This can even be used to create

larger chains without increasing the necessary integer encoding

space by alternating positive and negative charges. However, signed
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encoding, which is implemented based on two’s complement and

functional, is not used.

There is one important point to make, regardless of whether

ρ = 0 or not. Subtractor gates are not necessary to model gate-

based encoding. If we used signed encoding, we could simply

flip the sign bit on adders instead. However, this would waste a

valuable bit for simpler problems with Φ(0) ≥ 0, Φ(1) ≥ 0 and

ρ ≥ 0.

Even if signed encoding is not used, subtractor gates are not re-

quired.8 The constraint can be rearranged as shown in the equation 8 D-Wave’s Ocean-SDK already has
adder gates implemented among
others. However, subtractor gates are
not available.Φi

α − si
α

!
= ρi

α → si
α + ρi

α
!
= Φi

α. (5.50)

It is uncertain whether this is an improvement. A full-subtractor

and a full-adder QUBO have the same size and coefficients, with

only six of the ten off-diagonal signs flipped. Specifically, six coeffi-

cients in the 5 × 5 sub-QUBO are permuted.

5.8 False ancillas

Investigating the alterations to the circuit from the previous sec-

tion can reveal valuable insights beyond merely improving perfor-

mance. The carry and borrow bits are interrelated, as explained

below. Converting the subtractor to an adder would eliminate the

borrow bit and result in two carry bits, introducing symmetry to

the Hamiltonian. To elaborate, let us focus on the implementation

we ended up using. Although the ancilla qubits introduce over-

head, they also increase the complexity, which can make matters

more challenging. However, this complexity also presents opportu-

nities for further improvement.

We observe 0-energy solutions where the carry and borrow bits

are incorrect. This is because of the symmetries between carry

and ancilla. Some readers may be familiar with similar intricacies

within Feynman diagrams. In some samples, borrow and carry can

exchange roles. A quantitative analysis and mathematical motiva-

tion are beyond the scope of this thesis. However, careful validation

has demonstrated this to be true. Furthermore, investigating false

ancillas, where carry and borrow swap roles, would likely benefit

from circuit simplifications, as outlined in section 5.7.

However, it is possible to observe non-zero energy solutions

that yield the correct answer. As the success probabilities approach

zero with the given sample sizes, almost correct solutions with

a low Hamming distance may be observed. It is worth using the
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gate-based formulation to generate samples on an annealer, while

manually validating and evaluating the samples and discarding

the auxiliary ancilla data altogether. This method can identify valid

solutions within the sample that may not be apparent when only

considering the energy. Table 5.6 presents the problem scenarios in

which correct non-zero energy solutions are found.

Table 5.6: List of x-resolutions that
yield solutions for a higher number
of bits N when non-zero energy
samples are searched. False ancillas
are ignored, therefore the performance
improves. The x-resolution increases
from 8 to 11 pixels for tuned chain
strengths.

Resolution nx Old N New N∗ Sampler

7 4 5 Tuned Jchain QPU
9 - 4 Tuned Jchain QPU

11 - 4 Tuned Jchain QPU
20 5 6 Hybrid
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Figure 5.13: Best sample of electrostatic
potential Φi for gate-based QUBO
problem with tuned parameters
as evaluated by sum of squared
differences χ2. A chain strength
Jchain of 0.3 was used with a default
annealing time of 20 µs. Samples up
to a resolution nx of 11 pixels contain
correct solutions with the exception
of nx = 10. The potential Φ(x) for a
resolution of nx = 15 is slightly greater
than V0.

The background is colored using
the continuous Laplace equation. The
top and bottom bands for x ≥ 1 and
x ≤ 0 are fixed using Dirichlet bound-
ary conditions. There is no dedicated
figure for the binary-encoded coun-
terpart. However, a comparison with
the binary-encoded data is given in
Fig. 6.4.

Figure 5.13 visualizes false solutions for the smallest sum of

squared differences χ2 as opposed to energy, thus showcasing the

best-case potential of the sample set provided by the specific QUBO

formulation. It is important to note that the selected solutions re-

main unchanged for resolutions that we are able to solve. However,

for nx > 11, the best samples are much closer to the actual solution

than the lowest energy samples. Note that even for binary encoding

false solutions show significant improvement when evaluated using

the sum of squared differences χ2 from the correct solution. A fair

comparison is presented in Fig. 6.4, as well as a discussion of the

caveats.
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Comparison and discussion

Chapters 3 and 5 analyse binary and gate-based encoding in detail

by calculating and comparing the respective success probabilities.

In this chapter, the results are combined in summary plots. The

focus is on the problem sizes that can be solved given the sample

size, rather than the success probabilities for each problem size.

6.1 Benchmark

In addition to the analysis of QPU performance presented in chap-

ters 3 to 5, this section examines random sampling, simulated an-

nealing, and Leap’s hybrid solver. Table 6.1 provides a list of the

parameters used to benchmark binary and gate-based encoding.

Random Number of samples nsamples 1000
guesses Threshold for success p >0.5

Simulated Number of runs nruns 100
Number of sweeps nsweeps 1000

QPU Number of embeddings ne 10
Number of samples nsamples 1000
Binary Jchain/ max

∣∣Qij
∣∣ 0.38

Gate-based Jchain/ max
∣∣Qij

∣∣ 0.30
Annealing time tmax/µs 20

Hybrid Number of samples nsamples 10

Table 6.1: List of parameters for
summary plots. Random sampling,
simulated annealing and hybrid
annealing are introduced in this
chapter. The annealing parameters
chain strength and annealing time as
well as the concept of embeddings do
not apply to them.

Figure 6.1 illustrates the maximum number of bits N that is able

produce correct solution samples for a given resolution nx and sam-

ple size. The hatched area in Fig. 6.1 marks the N-region where

solutions are impossible. Gate-based encoding consistently solves

larger problems than the binary QUBO formulation. This is true for

problems solved with Leap’s hybrid solver, simulated annealing,

and for problems solved on the QPU, which is the primary focus of

the thesis.
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Figure 6.1: Maximum number of bits
N that produces successful samples
for the given sample size. The QPU
plots are based on tuned data with
gate-based chain strengths of 0.30 and
binary chain strengths of 0.38. Default
annealing time of 20 µs was used.
Table 6.1 lists the individual settings
and sample sizes.

The hatched area on the bottom
marks the region, where we lack
sufficient bits to solve the problem.
The hatched area on the left marks the
region where randomly guessing the
solution is more likely to succeed than
not and is given by equation 6.1. The
gate-based QPU marker at nx = 10 and
hybrid markers at nx ∈ {22, 23, 25}
are actually missing, as the analysis
did not produce a correect solution for
those resolutions and the given sample
size. Lines are guides to the eye.

Gate-based encoding is successful
for almost-trivial problem scenarios
nx ∈ {3, 4} with numbers of bits N so
large that we exclude them from the
plot. For nx = 4 failure occurred with
2 000 bits, while 1 000 bits succeeded.
For nx = 3 failure occured with 60 000
bits, while 50 000 bits succeeded.

In Fig. 6.1, it is not possible to make a direct comparison between

simulation, QPU annealing, hybrid annealing and the threshold

for random guesses because the respective sample sizes were cho-

sen independently from one another. The QPU annealing analysis

consists of nsamples = 1000 for each of the ne = 10 embeddings,

while the simulated annealing analysis consists of nsweeps = 1000

sweeps for each of the nruns = 100 runs. Increasing the sample

size allows for solving problems at higher resolutions. However,

it is important to note that larger sample sizes were not analysed.

Chapters 3 and 5 demonstrate an exponentially decreasing suc-

cess probability as the problem scale (nx, N) increases. The same

trend is observed with the random guesses, where nsamples = 1000

samples were taken.

Section A4 in the appendix derives the threshold for random

guesses, which is

N(nx) = −
log2

(
1 − p1/nsamples

)
nx − 2

, (6.1)

where nsamples is the number of guesses and p = 1/2 causes a

random guess to be more likely to succeed than not. Due to the

exponentially diminishing success probabilities, the impact of this

threshold and the sample size is visible but minimal. This obser-

vation also applies to simulated annealing and hybrid annealing.

Although hybrid annealing is not the main focus of this work, it is
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necessary to use more than one hybrid sample to avoid artifacting.

We have selected a sample set of nsamples = 10 hybrid samples to

ensure meaningful results.1 1 With one hybrid sample, we could
get unlucky with a probability of 1− p.
With an underlying success probability
of 0.5, the probability of 1 sample
missing the correct answer is 0.5,
whereas the probability of 10 samples
missing the correct answer is below
0.001. However, with 10 samples, we
can expect to observe failure around
success probabilities smaller than 0.1
and practically eliminate the possiblity
of success probabilities slightly below
1.0 failing.

Although there is a lack of comparability, it is evident that sim-

ulated annealing and quantum annealing significantly outperform

1000 random guesses.2 In addition, the hybrid annealer signifi-

2 This is the case even if we were
to assume a different threshold for
success than 0.5.

cantly outperforms a pure QPU approach, regardless of the number

of hybrid samples. It demonstrates the potential of current hard-

ware implementations and provides a simple benchmark for com-

paring binary encoding with the gate-based approach. The hybrid

results give weight to the rest of the analysis, since they mitigate

potential biases, errors or false assumptions among the complexities

of the QPU approach along with all the hyperparameters, solver

types and implementation intricacies. Nevertheless, we focus on

quantum annealing instead of studying and possibly reverse engi-

neering the black box that is Leap’s hybrid solver.3 3 Leap’s hybrid annealer has limited
options for modifying the behaviour of
the black box.

6.1.1 Performance regardless of bit count

We include problems with very high numbers of bits N, much

higher than necessary to encode solutions. This is because those

problems are the main weakness and bottleneck in ordinary binary

encoded QUBOs. However, many-bit solutions are sparse and for

very small problem sizes it can take a significant amount of time

to find a number of bits N that is high enough to result in fail-

ure. Additionally, analysing more bits than necessary was done to

maintain consistency when comparing performance with differ-

ent resolutions nx. If sweeps were performed on problem sizes nx

with variable encoding lengths N, jumps would occur at resolutions

nx ∈ 2N which require additional bits.

Nevertheless, the number of bits N, is an implementation de-

tail and not a parameter of the problem at the analytical level. The

analytical difficulty is determined by the grid size, boundary con-

ditions and initial conditions. The required number of bits can be

determined before encoding the problem, and the actual number is

irrelevant as long as it is sufficient to decode a successful solution.

Figure 6.2 illustrates the largest problems that can be solved for any

sufficiently high number of bits N. The six data sets from Fig. 6.1

are flattened by discarding the N-information. The metric shows

the highest x-resolution nx that produces correct samples regard-

less of N.4 Gate-based encoding for simulated, QPU and hybrid 4 In a way, it indicates the resolution
at which the number of bits N crashes
into the hatched area - the region
where solutions are no longer possible.

annealing each significantly outperforms the binary approach for

the selected problem scenario.
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Figure 6.2: Comparison of maximum
resolution nx that can be solved with
any amount of bits N given the sample
size. The tuned QPU analysis used
a gate-based chain strength of 0.30
and a binary chain strength of 0.38.
Default annealing time of 20 µs was
used. Table 6.1 lists the individual
settings and sample sizes. The gate-
based tuned QPU succeeds for nx = 11
but fails for nx = 10 and hybrid
annealing succeeds for nx = 26 but
fails for nx ∈ {22, 23, 25}. The dashed
grey lines delimit the resolutions nx
that can produce solutions for the
labeled number of bits. 1000 random
guesses would more likely succeed for
resolutions up to 5 pixels than not.
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Simulated 60%
QPU default 0%
QPU tuned 50%
Hybrid 60%

Table 6.2: List of relative improvements
of maximum problem size from
Fig. 6.2. Note that two pixels are fixed
due to Dirichlet boundary conditions.
Therefore, nx − 2 is the reference count
as it is proportional to the number of
variables nh.

We also included default parameter performance for compari-

son. In chapter 4 we were unable to improve the performance of

binary encoding through parameter tuning. In Fig. 6.2 it can be

seen, that both the QPU with default parameters and the QPU with

tuned chain strength are unable to exceed a resolution of nx = 8.

It is worth noting that these solutions only require N = 3 bits,

whereas resolutions with nx > 8 require a fourth bit to encode the

nine different Φ values in the array of solutions. Figure 6.1 demon-

strates this requirement with the binary data around a resolution of

nx = 8. The binary model reaches the hatched area as the resolution

approaches nx = 8. It can barely solve the 3-bit problem and solv-

ing the 4-bit problem seems practically impossible with the given

sample sizes. In summary, the binary model faces additional chal-

lenges in solving higher resolutions due to the step in the hatched

area at nx = 8, further diminishing its success probabilities. On

the other hand, gate-based encoding performs significantly better

and is able to overcome this 4-bit threshold. With that obstacle over-

come, gate-based encoding reaches nx = 10 and nx = 11, since the

next threshold is at a resolution of nx = 16.

It is important to note that gate-based encoding benefits from

hyperparameter tuning in contrast with the binary formulation.

Gate-based encoding produces more successful samples with de-

fault parameters. However, tuning of chain strength improves the

maximum resolution from nx = 8 to 11 for the given sample size.

This is a significant improvement, and without tuning, binary en-

coding can only solve problems with equal resolution. The default

chain strengths based on the UTC model can be described as an

educated guess at best. Binary models are not noticeably impacted

by the chain strength, while the default values used by D-Wave put
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gate-based models at a disadvantage. The latter models turn out to

be more sensitive to the choice of chain strength Jchain.

6.1.2 Discussion of errors

To conclude this comparison between binary and gate-based QUBO

models, we will now examine the false solution behaviour pre-

sented in Fig.3.2 and Fig. 5.12. Figure 6.3 illustrates the errors

Φi − Φ(xi) of each pixel for 4-bit resolutions. The figure shows

that gate-based models can solve resolutions of 9 and 11, whereas

binary models cannot.
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Figure 6.3: Difference between best
sample and correct solution Φi − Φ(xi)
with tuned parameters as evaluated
by energy. A gate-based chain strength
of 0.30 and a binary chain strength of
0.38 were used. Default annealing time
of 20 µs was used. The electrostatic
potentials are given in Fig. 5.12 and
Fig. 3.2.

Regardless of the model used, errors in Figure 6.3 are strongly

correlated and can appear as smooth gradients. This is because the

discrete Laplace operator solves for piecewise potentials but fails

to do so globally. For instance, instead of increasing the potential

in integer steps, the potential can increase with a slope of 2 per

pixel or more. The discrete Laplace operator yields each value’s

difference from the average of its neighbouring values, resulting in

solutions that are piece-wise linear in one dimension.

Homogeneous batches of errors may occur, especially with gate-

based models, as seen in the 16-pixel potential.

Φ =
1
15

(0, · · · , 8, 9, 10, 11, 12, 13, 14, 15, 15)T V0 (6.2)

In particular, the least significant solution bit Φ13
0 contains an error
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with a value of 1 instead of 0, which propagates and results in the

regions in-between becoming local solutions of the discrete Poisson

equation. These errors resemble kinks.5 The potential between5 The indices refer to the pixel i = 13
adjacent to the boundary at x = 1,
which has index 14 for a resolution
of 15. The subscript 0 is the least
signficant bit α turning what should be
a potential of 14 to 15 in equation 6.2.

the kinks in these regions increases linearly in integer steps, but

deviates from the true potential by an offset. Since errors can be

identified in specific locations on the QPU chip, there may be a

possibility of correction, although this is beyond the scope of this

thesis. It is worth noting that correction may not be necessary. The

system is described by the physical quantity of the electric field,

which remains invariant when a constant is added to the potential.

There is a subtle but important difference between binary and

gate-based encoding. Gate-based values are more robustly con-

nected due to the ancillas, which act as a support. Binary encoding

also has neighbouring pixels that depend on each other, but the

interactions in the QUBO matrices are more dispersed.66 Fig. 3.3 plots the binary QUBO matrix
and Fig. 5.5 plots the gate-based
QUBO matrix. Table 6.3 presents the lengths nseg of the longest segments that

locally solve the Poisson equation, irrespective of offset or slope.

Table 6.3: Lengths nseg of the longest
segments that locally solve the Poisson
equation for 4-bit resolutions. nx is the
x-resolution. A relative segment length
nseg/nx of 1 indicates a sample that
globally solves the Poisson equation.
The right column lists the relative
improvement ∆n/nx and ∆n is the
difference between gate-based and
binary segment lengths nseg. The
bottom row gives the mean values and
the standard errors of the mean.

nx nseg
nseg
nx

(%)
∆nseg
nseg

(%)

Binary Gate-based Binary Gate-based

9 4 9 44 100 125
10 3 6 30 60 100
11 4 11 36 100 175
12 4 7 33 58 75
13 4 6 31 46 50
14 4 7 29 50 75
15 5 5 33 33 0
16 3 8 19 50 167

Mean 3.9 7.4 32 62 96
± 1.4 ± 2.6 ± 11 ± 22 ± 34

It is important to note that in this context, ‘correct’ does not neces-

sarily mean a good approximation of the global analytical solution,

but instead that they solve the Poisson equation locally. Integer in-

crement regions and linear regions, regardless of their slope, are

considered correct. Table 6.3 shows that segments with gate-based

encoding are significantly longer.

The disparity is significant, with even the second longest seg-

ments of gate-based encoding, i.e. 0, 4, 0, 5, 6, 6, 4 and 3, are capable

of competing with the longest segments of binary encoding. Since

the gate-based formulation solves the discrete Poisson equation

globally for resolutions nx of 9 and 11 pixels, there cannot be a

secondary segment of any size. Therefore, the corresponding seg-
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ments have a length of 0. In conclusion, the secondary gate-based

segment length is only shorter than the maximum binary segment

length for nx = 15 pixels, which is not surprising since a third of

the x-domain is already occupied by the primary segment of length

5.

6.2 Prospect

Section 6.1.2 establishes that errors are not stochastic but strongly

correlated. As mentioned in section 5.8, errors among the ancilla

qubits affect the energy in gate-based encoding. It would be worth-

while to analyse a metric that determines the best sample unaf-

fected by deviating ancilla values. When using a different evalua-

tion metric, the production of samples remains unchanged, only the

order of suboptimal samples is altered.

Accurate approximations are correlated with low energy levels.

However, it is important to note that the energy level alone is not

a reliable indicator of the quality of the solution candidate, even

when false ancillas are not present. To address this, a thorough

search of the entire sample set was conducted to identify the best

candidate based on the sum of squared differences χ2.7 Figure 6.4 7 See Fig. 5.13

shows The comparison between binary and gate-based QUBO for-

mulations. The evaluation metric is now independent of ancillary

data, which allows correction of any distortion caused by energy-

based sampling in Fig. 6.3.

However, determining what constitutes a good solution is not

immediately apparent. Although manually evaluated samples may

provide a more accurate approximation of the correct solution, it

is important to note that the deviations in Fig 6.3 are highly cor-

related. It is possible that we resorted to brute-force searching for

a lucky guess and discarded a seemingly worse solution that is

correct over the entire region, albeit with one or two major but cor-

rectable kinks which distort the sum of squared differences χ2. The

evaluation of every pixel independently in the sum of squared dif-

ferences χ2 discards important correlations. Further investigation is

necessary to answer these questions with certainty.

However, the custom evaluation metric can provide an indication

of each method’s potential in the best-case scenario. Furthermore,

when examining the gate-based case for a resolution of nx = 10,

it is evident that accounting for false ancillas is crucial. In such

cases, the energy-based evaluation produces a significantly infe-

rior solution compared to the least-squares-based evaluation, as

shown in Tab.6.4. However, it is worth noting that 8 = (1000)2
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Figure 6.4: Difference between best
sample and correct solution Φi − Φ(xi)
with tuned parameters as evaluated
by the sum of squared differences χ2. A
gate-based chain strength of 0.30 and
a binary chain strength of 0.38 were
used. Default annealing time of 20 µs
was used. The gate-based electrostatic
potentials is given in Fig. 5.13.

and 7 = (0111)2 are represented by complementary bit strings.

Therefore, the high energy is not necessarily due to false ancillas.

As explained in section 5.8, correct solutions within the sample set

may have non-zero energy. Therefore, it is imperative to assess the

samples using a specific metric.

Table 6.4: Comparison of energy-based
and least-squares-based evaluation
metrics H and χ2 respectively for a
resolution of 10 pixels. The correct
solution is (Φi) = (0, 1, · · · , 9)T . The
bottom sample is more accurate.

H χ2 Sample Φi

2 6 0 1 2 3 4 5 5 5 7 9
4 1 0 1 2 3 4 5 6 8 8 9

Before concluding this section, we have three remarks. Firstly,

additional analysis is necessary for different QPUs, particularly

for Advantage 2. Secondly, a promising area for future research

is to apply the concept introduced here to different problem sce-

narios such as the reduced Navier-Stokes equation (rNSE) in one

dimension. By selecting an appropriate time resolution ∆t, the

rNSE generalises the Poisson problem by replacing the 2s in the

diagonal with arbitrary numbers.8 Finally, in section 6.6, gate-based8 Azzam, “Evaluating Partial Differ-
ential Equations on the Quantum
Annealer JUPSI” (2023). encoding is discussed in the context of higher-dimensional problem

scenarios.
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6.3 About gate-based encoding

The gate-based encoding approach is not a substitute for binary

encoding, but rather a new formulation that uses gates to encode

the problem. This approach eliminates the issue of exponentially

increasing weight of leading digits, which causes auto-scaling to

shrink the smaller weights to values smaller than the realizable

precision of the magnetic fields on the QPU. However, some may

view this approach as defeatist because it prioritises the accuracy of

leading digits at the expense of smaller digits, ultimately resulting

in rounded values.

Gate-based encoding assigns equal QUBO weights to each bit in

the final bit string. The resulting bit string returned by D-Wave is

identical in both cases. The bit string is treated like a combination

lock, where all digits must be correct for the solution to be consid-

ered valid. In this analogy, the lock will not open if even a single

digit is incorrect.

However, there is a cost associated with this improvement. For

standard encoding, only (nx − 2)N variables are required, one for

each of the N digits of the nx − 2 solution variables. It is impossible

to create a QUBO formulation that can produce a (nx − 2)N-bit

solution without using (nx − 2)N variables. Gate-based encoding

typically requires three additional variables per solution variable:

sum, carry and borrow ancillas. 9 9 Note that this is not the case for the
first and the last digits.

6.4 Requirements for gate-based encoding

The approach is inspired by the factorisation of a number p × q into

p and q, where the product p × q is represented by a multiplication

circuit.10 At first, we expressed each row of the LSE DΦ = ρ as a 10 Jiang et al., “Quantum Annealing for
Prime Factorization” (2018).sum of products

Di0 × Φ0 + Di1 × Φ1 + · · ·+ Di,nx−1Φnx−1 = ρi. (6.3)

However, the multiplication of a single product p × q is already a

significant issue and the number of variables increases drastically

in the case of matrix multiplication. We are dealing with O(n2
x)

products that must be summed up row by row.

Two critical aspects were observed for gate-based encoding to

show promise.

1. Firstly, D is highly sparse, meaning that no multiplications are

required for off-tridiagonal i, j with Dij = 0.

2. Doubling a binary number is a straightforward process, similar
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to multiplying a decimal number by ten (cf. Fig. 5.3).

The discrete Laplace operator has a distinct and highly sparse band

structure, consisting of [−1, 2,−1] blocks. This structure can be

effectively exploited.

The hypothesis is that arithmetic problems involving sums, dif-

ferences, and multiplication by powers of 2 can benefit from the

gate-based approach, especially when there is only one exact solu-

tion. However, if a problem is an approximation that needs to be

optimized, not all digits should necessarily carry equal weight.1111 For instance 999.99 is a good approx-
imation to 1 000 albeit all digits are
different. In the gate-based paradigm,
0 is actually closer to 1 000 since all but
a single digit match.

Although multiplying by powers of 2 is straightforward, it does

not necessarily mean that other multiplications are impossible. To

multiply a number by a factor of 3, double the number and add it

to itself

3 × x = 2 × x + x. (6.4)

In other words, multiplication by a factor of 3 = 21 + 1 results in

one extra addition. Multiplication by a factor of 2k + n results in n

extra additions.1212 If 2k + n is closer to 2k+1, then we
can of course multiply by 2k+1 and
proceed to perform the necessary
amount of subtractions. 6.5 Limitations

For simple problems nx = 3 with solution (0 · · · 01) and nx = 4

with solution (0 · · · 001), (0 · · · 010), practical problems arise such as

a long wall-clock time to form the binary quadratic model (BQM).
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Figure 6.5: Creation time of gate-based
models for low resolutions of 3 and
4 pixels. The durations are timed on
our development laptop since we are
primarily interested in the scaling. No
considerations for optimization were
made.

We will focus on larger nx grids and avoid exploring small prob-

lems. The implementation loops through each α ∈ {2, 3, · · · , N − 1}
twice and connects the many sub-QUBOs using string labels. It is

important to note that current implementations are restricted by the

QPU topology and performance.

6.6 Higher dimensions

The discrete Laplace operator in two dimensions D2d is highly

sparse. However, it consists of 4s on its diagonal and four non-zero

values per row as opposed to just two. The resulting blocks are

[−1, 0, · · · , 0,−1, 4,−1, 0, · · · , 0,−1]. (6.5)

The gate-based encoding approach shows promise even in higher

dimensions, as it can recursively leverage the one-dimensional

implementation

[−1, 2,−1] ◦ [−1, · · · , 2, · · · ,−1] → [−1, · · · ,−1, 4,−1, · · · ,−1].

(6.6)
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It is noteworthy that we can significantly13 increase the number 13 quadratically

of grid cells without requiring more bits N. This allows us to create

non-trivial problems similar to the balanced problem scenarios in

various ways. One possible method for adapting the problem to a

second dimension is outlined in the schema in Fig. 6.6.

0 1 2 3 4 →

1 2 3
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

1 2 3

Figure 6.6: Embedding the problem
scenario in two dimensions. Gradient
from edge to edge.

Applying a one-sided bias of V0 = 4 does not offer new infor-

mation, although we can benchmark the more complex problem. It

is worth considering applying a one-sided bias to the corner of the

topology as shown in Fig. 6.7. In general, higher-dimensional gate-

0 1 2 3 4 →

0 1 2
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6

4 5 6

.

Figure 6.7: Two dimensional problem
with gradient from corner to corner.

based encoding makes more efficient use of the available encoding

space. We can also make more efficient use of the available encod-

ing space in one dimension, by creating problem scenarios that

alternate between 0 and V0 > 0. However, this approach requires

non-zero charge densities ρ(r0) for the maxima and minima.

0 1 2 3 4 →
0 1 2 3 4 3 2 1 0 1 · · · 4

Figure 6.8: Alternating potential Φ
due to presence of charges ρ. Solutions
with local minima for x ∈ (0, 1) require
the presence of negative charges.
Signed integer encoding is required to
represent negative charge densities.Furthermore, problems can become more interesting in higher

dimensions. In one dimension, solutions are necessarily linear.

The solution can always be written down14, even for the Poisson 14 As a rule of thumb, for cells r0
with ρ(r0) = 0, the discrete Laplace
operator acts in a way that each cell
must be the average of the 2 × dim
adjacent cells.

problem with non-zero charge density ρ. In two dimensions, the

potential Φ(r) induced by a non-zero charge density in cell r0 drops

with 1/∥r − r0∥, following the Coulomb law.





Appendix

A1 Tables of abbreviations and symbols

Description

BQM Binary quadratic model
CCJJ Compound-compound Josephson-junction
CSP Constraint satisfaction problem
LHS Left-hand side
LSE Linear system of equations
PDE Partial differential equation

QUBO Quadratic unconstrained binary optimization
RHS Right-hand side

rNSE Reduced Navier-Stokes equation
SDK Software development kit

SQUID Superconducting quantum-interference device
UTC Uniform torque compensation

Table A.1: List of abbreviations.

Symbol Description

A(t), B(t) Annealing functions that define annealing schedule

Ax = b Notation for generic LSE

α Greek index describing binary digit α in binary representation

bi
α Borrow bit α for row i

ci
α Carry bit α for row i

DΦ = ρ Discrete laplace equation

D Discrete Laplace matrix

∆ Overhead time

∆x Spacing between discretized x points

E(x) Electrical field

ϵ0 Permittivity of free space

Φ(x) Electrostatic potential

Φ Discretized electrostatic potential

Φi i-th component of discretized electrostatic potential

Φ(x)
i External flux on qubit i
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ΦCCJJ Flux applied to all CCJJ structures

H Hamiltonian, energy function, loss function, objective

H0 Initial Hamiltonian

Hproblem Final / problem Hamiltonian

hi Linear Ising weight for qubit i

i Index enumerating space discretization (latin)

iα Short form for (i, α) describing multi-index i, α

Jij Quadratic Ising weight for qubits i, j

Jchain Chain strength

J⋆chain Optimal chain strength

Jdef Default chain strength

Jutc Uniform torque compensation based chain strength

N Number of bits or encoding length

nat Number of annealing times

ncs Number of chain strengths

ne Number of embeddings

nh Number of variables in Q

nJ Number of interactions in Q

nruns Number of runs of the simulated annealing algorithm

nsamples Sample size or number of guesses

nsuccess Number of successes

nsweeps Number of sweeps used in simulated annealing

nx Number of equidistant, discrete x values that represent the interval [0, 1]

⊕ Addition modulo 2

⊖ Subtraction modulo 2

p Estimator for success probability

pfail Probability of failure

Q QUBO matrix

Qi
α QUBO coefficient of multi-index iα

Q⊕ QUBO matrix for full-adder gate

Q⊖ QUBO matrix for full-subtractor gate

ρ(x) Charge density

ρ Discretized charge density

ρi i-th component of discretized charge density

si
α Sum ancilla α for row i

σ(x) Pauli-x-matrix

σ(z) Pauli-z-matrix

Td Delay time

tmax, tannealing Annealing time

Tp Programming time

Tr Readout time

x Variable representing all problem variables
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xi i-th integer problem variable

xi
α Digit α of i-th problem variable

Solution qubit (i, α)

(xα) Bit-string

xα Digit α of binary representation of x

V0 Applied voltage

z Quantile for 95% confidence interval

Table A.2: List of symbols.

A2 Hyperparameter tuning
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Figure A.1: Success probabilities for
tuned chain strength. (Top) Binary
encoding. A chain strength of 0.38 was
used. (Bottom) Gate-based encoding. A
chain strength of 0.30 was used.

The success probabilities for default
values are included with shaded
colors.
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Figure A.2: Binary encoded annealing
time tuning Success probabilities
(y-axes) for each resolution nx and
number of bits N in terms of annealing
time tmax (x-axes). The axes have
consistent ticks throughout. The
analysis compared 10 embeddings
with 10 samples per annealing time.
The grid scan covers 10 logarithmically
spaced annealing times between 20 µs
and 2 ms. The shaded area shows the
best embedding for each annealing
time, as well as the worst embedding
with a success probability greater than
zero. The average of the non-zero
probabilities is indicated by the thick
black line. The optimal annealing
time, t⋆max, which is determined by
the maximum probability for each
embedding and annealing time, is
marked by the vertical orange lines.
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Figure A.3: Gate-based annealing
time tuning Success probabilities
(y-axes) for each resolution nx and
number of bits N in terms of annealing
time tmax (x-axes). The axes have con-
sistent ticks throughout, as indicated
by the stand-alone axis. The analysis
compared 10 embeddings with 100
samples per chain strength. The grid
scan covers 10 equidistant relative
chain strengths ranging from 0.1 to
1.0. The shaded area shows the best
embedding for each chain strength, as
well as the worst embedding with a
success probability greater than zero.
The average of the non-zero proba-
bilities is indicated by the thick black
line. The optimal chain strength, J⋆chain,
which is determined by the maxi-
mum probability for each embedding
and chain strength, is marked by the
vertical orange lines.
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A3 Low-resolution problems

For very low-resolutions, gate-based encoding is able to solve the

problem even for very high numbers of bits N.
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Figure A.4: Success probabilities for
gate-based encoding with default
values. The probabilities for binary
encoding are included in shaded col-
ors. (Top) Solutions without evaluating
non-zero energy samples. (Bottom)
Solutions validated by decoding and
verifying, if the bit string is correct.

Integer Φ1
1

Binary (Φ1
α)2 (0 · · · 01)2

Table A.3: Integer solution Φ1 for
nx = 3 and its bit string representation.
See equation (A.1).

However, nx = 3 the smallest problem that is not trivial:
1 0 0

−1 2 −1

0 0 1




0

Φ1

2

 =


0

0

2

 . (A.1)

A4 Random guessing threshold

Guessing nx − 2 problem variables represented by N binary vari-

ables each is equivalent to guessing an nh-bit string with

nh = (nx − 2)N. (A.2)

The probability to guess every bit correctly is 1/2nh per indepen-

dent guess. The failure probability with nsamples = 1000 indepen-
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dent guesses is

pfail =

(
1 − 1

2nh

)nsamples

. (A.3)

Since probabilities are non-negative and counts are positive, we

take the root and obtain

1
2nh

= 1 − p
1/nsamples
fail . (A.4)

Since log 1 = 0, the base-2 logarithm yields

nh = (nx − 2)N = − log2

(
1 − p

1/nsamples
fail

)
. (A.5)

The result is N as a function of pfail, nsamples and nx

N(pfail, nsamples, nx) = −
log2

(
1 − p

1/nsamples
fail

)
nx − 2

. (A.6)

A failure threshold pfail of 0.5 does not predominantly affect the

N-threshold when compared to a threshold of 0.1. Given nsamples,

the N-threshold where solutions are more likely than not is given

by

N(nx) = −
log2

[
1 −

(
1
2

)1/nsamples
]

nx − 2
. (A.7)

A5 Relation between QUBO and Ising coefficients

We derive the relation between the Qij from binary models and

hi, Jij from spin models. Binary variables xi take values 0 and 1,

while spin variables si take values ±1. The transformation xi ↔ si

is given by

xi =
si + 1

2
si = 2xi − 1 (A.8)

We insert (A.8) into (2.8) in (A.11).

H(x) = ∑
i

Qixi + ∑
i

∑
j>i

Qijxixj (A.9)

= ∑
i

Qi
2
(si + 1) + ∑

i
∑
j>i

Qij

4
(si + 1)(sj + 1) (A.10)

= ∑
i

Qi
2

si + ∑
i

∑
j>i

Qij

4
sisj + ∑

i
∑
j>i

Qij

4
(si + sj) + Hconst (A.11)

The energy offset Hconst does not affect the Ising coefficients hi, Jij.

For posterity, it is given by

Hconst = ∑
i

Qi
2

+ ∑
i

∑
j>i

Qij

4
. (A.12)
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We distribute si + sj in (A.11)

∑
i

∑
j>i

Qij

4
(si + sj) (A.13)

= ∑
i

(
∑
j>i

Qij

4

)
si + ∑

j

(
∑
i<j

Qij

4

)
sj (A.14)

and swap i ↔ j in the second sum in (A.14) to obtain

∑
i

(
∑
k>i

Qik
4

)
si + ∑

i

(
∑
k<i

Qki
4

)
si (A.15)

= ∑
i

(
∑k>i Qik + ∑k<i Qki

4

)
si, (A.16)

where we re-labelled j → k to avoid confusion with column indices.

We insert (A.16) into (A.11) and identify

hi =
Qi
2

+ ∑
k>i

Qik
4

+ ∑
k<i

Qki
4

. (A.17)

This can be written in a more compact way. Q is an upper-triangle-

matrix and the terms in (A.17) correspond to the i-diagonal, the

non-zero values of row i to the right and the non-zero values of

column i to the top. Summing over the lower triangle does not alter

the result but allows to write the term in a single sum. We obtain

hi = ∑
k

Qik + Qki
4

Jij =
Qij

4
(A.18)
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