001038476 001__ 1038476
001038476 005__ 20260123203310.0
001038476 0247_ $$2doi$$a10.1109/TBCAS.2023.3342465
001038476 0247_ $$2ISSN$$a1932-4545
001038476 0247_ $$2ISSN$$a1940-9990
001038476 037__ $$aFZJ-2025-01472
001038476 082__ $$a620
001038476 1001_ $$0P:(DE-HGF)0$$aLöhler, Philipp$$b0
001038476 245__ $$aA Cell-Type Selective Stimulation and Recording System for Retinal Ganglion Cells
001038476 260__ $$aNew York, NY$$bIEEE$$c2024
001038476 3367_ $$2DRIVER$$aarticle
001038476 3367_ $$2DataCite$$aOutput Types/Journal article
001038476 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769169531_26672
001038476 3367_ $$2BibTeX$$aARTICLE
001038476 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038476 3367_ $$00$$2EndNote$$aJournal Article
001038476 500__ $$aThe authors would like to thank Thaameran Baskaran, Filip Yordanov,AhmedHabeel,MustafaAbdulsattar,andLauraHeyermann for their valuable support.
001038476 520__ $$aAbstract—Future retinal implants will require a stimulation selectivity between different sub-types of Retinal Ganglion Cells (RGCs) to evoke natural perceptions rather than phosphenes in patients. To achieve this, a cell-type specific stimulation pipeline is required that identifies target RGC sub-types from recorded input images and extracts the specific stimulation parameters to activate this cell-type selectively. Promising biological experiments showed that ON-/OFF- sustained/transient RGCs could be selectively activated by modulating repetition rate and amplitude of an electrical stimulation current in the kilohertz range. This research presents a 42 channel current controlled stimulation and recording system on chip (SoC) with parameter input from a real time target RGC selection algorithm. The SoC is able to stimulate retinal tissue with sinusoidal frequencies higher than 1 kHz at amplitudes of up to 200 µA at a supply voltage of 1.8 V. It also includes tunable recording units with an integrated action potential detection pipelinethatareabletoamplifysignalsbetween 1 Hz and 50 kHz. The required area of one stimulator is 0.0071 mm2, while one recording unit consumes an area of 0.0092 mm2. The application of sinusoidal stimulation currents in the kilohertz range towards retinal tissue leads to a suppressive response of only certain RGC sub-types that has not been oberved before, using electrical stimulation. Because this response is very similar to the natural light response of RGCs, this stimulation approach can lead to a more genuine visual perception for patients using retinal implants.
001038476 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001038476 536__ $$0G:(GEPRIS)424556709$$aGRK 2610 - GRK 2610: Innovative Schnittstellen zur Retina für optimiertes künstliches Sehen - InnoRetVision (424556709)$$c424556709$$x1
001038476 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038476 7001_ $$0P:(DE-HGF)0$$aAlbert, Andreas$$b1
001038476 7001_ $$0P:(DE-HGF)0$$aErbslöh, Andreas$$b2
001038476 7001_ $$0P:(DE-Juel1)188199$$aNruthyathi, Nruthyathi$$b3$$ufzj
001038476 7001_ $$0P:(DE-Juel1)131939$$aMüller, Frank$$b4$$eCorresponding author
001038476 7001_ $$0P:(DE-HGF)0$$aSeidl, Karsten$$b5
001038476 773__ $$0PERI:(DE-600)2260089-9$$a10.1109/TBCAS.2023.3342465$$gVol. 18, no. 3, p. 498 - 510$$n3$$p498 - 510$$tIEEE transactions on biomedical circuits and systems$$v18$$x1932-4545$$y2024
001038476 8564_ $$uhttps://juser.fz-juelich.de/record/1038476/files/IEEE%20Transactions_on-Biomedical_Nruthyathi_M%C3%BCller_01_2023.pdf$$yRestricted
001038476 909CO $$ooai:juser.fz-juelich.de:1038476$$pVDB
001038476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188199$$aForschungszentrum Jülich$$b3$$kFZJ
001038476 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131939$$aForschungszentrum Jülich$$b4$$kFZJ
001038476 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001038476 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T BIOMED CIRC S : 2022$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001038476 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T BIOMED CIRC S : 2022$$d2024-12-16
001038476 920__ $$lyes
001038476 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001038476 980__ $$ajournal
001038476 980__ $$aVDB
001038476 980__ $$aI:(DE-Juel1)IBI-1-20200312
001038476 980__ $$aUNRESTRICTED