001038495 001__ 1038495
001038495 005__ 20260123203310.0
001038495 0247_ $$2doi$$a10.1098/rsob.240140
001038495 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01490
001038495 037__ $$aFZJ-2025-01490
001038495 082__ $$a570
001038495 1001_ $$0P:(DE-HGF)0$$aNiklaus, Stephanie$$b0
001038495 245__ $$aGlutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina
001038495 260__ $$aLondon$$bRoyal Society Publishing$$c2024
001038495 3367_ $$2DRIVER$$aarticle
001038495 3367_ $$2DataCite$$aOutput Types/Journal article
001038495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769169583_26672
001038495 3367_ $$2BibTeX$$aARTICLE
001038495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038495 3367_ $$00$$2EndNote$$aJournal Article
001038495 520__ $$aIn the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
001038495 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001038495 536__ $$0G:(GEPRIS)426950122$$aDFG project G:(GEPRIS)426950122 - FOR 5046: Integrative Analyse epithelialer SLC26 Anionentransporter – von der molekularen Struktur zur Pathophysiologie (426950122)$$c426950122$$x1
001038495 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038495 7001_ $$0P:(DE-HGF)0$$aGlasauer, Stella M. K.$$b1
001038495 7001_ $$0P:(DE-Juel1)156374$$aKovermann, Peter$$b2
001038495 7001_ $$0P:(DE-HGF)0$$aFarshori, Kulsum F.$$b3
001038495 7001_ $$0P:(DE-HGF)0$$aCadetti, Lucia$$b4
001038495 7001_ $$0P:(DE-HGF)0$$aFrüh, Simon$$b5
001038495 7001_ $$0P:(DE-HGF)0$$aRieser, Nicolas N.$$b6
001038495 7001_ $$0P:(DE-HGF)0$$aGesemann, Matthias$$b7
001038495 7001_ $$0P:(DE-HGF)0$$aZang, Jingjing$$b8
001038495 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b9
001038495 7001_ $$0P:(DE-HGF)0$$aNeuhauss, Stephan C. F.$$b10$$eCorresponding author
001038495 773__ $$0PERI:(DE-600)2630944-0$$a10.1098/rsob.240140$$gVol. 14, no. 7, p. 240140$$n7$$p240140$$tOpen biology$$v14$$x2046-2441$$y2024
001038495 8564_ $$uhttps://juser.fz-juelich.de/record/1038495/files/Open_Biology_Kovermann_Fahlke_06_2024.pdf$$yOpenAccess
001038495 909CO $$ooai:juser.fz-juelich.de:1038495$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001038495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156374$$aForschungszentrum Jülich$$b2$$kFZJ
001038495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b9$$kFZJ
001038495 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001038495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-30
001038495 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPEN BIOL : 2022$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-03-15T10:46:58Z
001038495 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-03-15T10:46:58Z
001038495 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-03-15T10:46:58Z
001038495 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bOPEN BIOL : 2022$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-30$$wger
001038495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001038495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
001038495 920__ $$lyes
001038495 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001038495 980__ $$ajournal
001038495 980__ $$aVDB
001038495 980__ $$aUNRESTRICTED
001038495 980__ $$aI:(DE-Juel1)IBI-1-20200312
001038495 9801_ $$aFullTexts