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Summary

Machine learning (ML) models benefit from large datasets. Collecting data in biomedical do-
mains is costly and challenging, hence, combining datasets has become a common practice.
However, datasets obtained under different conditions could present undesired site-specific vari-
ability. Data harmonization methods aim to remove site-specific variance while retaining biolog-
ically relevant information. This study evaluates the effectiveness of popularly used ComBat-
based methods for harmonizing data in scenarios where the class balance is not equal across
sites. We find that these methods struggle with data leakage issues. To overcome this problem,
we propose a novel approach “PrettYharmonize”, designed to harmonize data by pretending the
target labels. We validate our approach using controlled datasets designed to benchmark the
utility of harmonization. Finally, using real-world MRI and clinical data, we compare leakage-
prone methods with “PrettYharmonize” and show that it achieves comparable performance while
avoiding data leakage, particularly in site-target-dependence scenarios.
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Introduction

Many research fields have greatly benefited from machine learning (ML) approaches. ML models
can extract important values from large amounts of data. Having vast data benefits the model’s
classification performance and helps capture the underlying patterns, promoting better gener-
alization to new unseen data. This makes combining multiple datasets an appealing approach,
especially in domains where obtaining data in a uniform setting is challenging1. Moreover, small
health or research centers that can not afford to collect a large number in-house data, using data
acquired in different sites is the only possibility for train ML models. However, different datasets
obtained under different conditions often present variability due to differences in the acquisition
procedure that are unrelated to relevant biological information2. This undesired variability, also
known as Effects of Site (EoS), can induce biased results if present or not correctly removed3.
These differences may come from systematic differences, which can be corrected, or random
variations, which can not be modeled or corrected by harmonization. This problem is of common
occurrence in many biomedical domains. For example, clinical data is affected by the acqui-
sition site, as different hospitals have different laboratory machines, procedures, and criteria.
Another example is the medical imaging field, as images are affected by acquisition protocol,
scanner drifts, and time of the day, just to name a few factors3,4. Within this field, Magnetic Res-
onance Imaging (MRI) images are particularly susceptible to this site-related variance, like the
magnetic field strength, room temperature fluctuation or changes in the electromagnetic noise,
which makes even images obtained from scanners with the same manufacturer and the same
parameters exhibit different characteristics5,6. Many works showed that removing this undesired
systematic variability, which is only related to the acquisition site and has no biological informa-
tion, can benefit further analysis made with the data7–11. To this end, several Methods Aiming to
Remove the Effects of Site (MAREoS) have been proposed and developed4,12. These MAREoS
methods are typically used as a pre-processing step, where the site effects are removed and the
“site-effect free” data, also known as harmonized data, is used for statistical analysis or to train
and evaluate ML models.

Among these MAREoS, the ones based on “ComBat” are extensively used in several do-
mains. The ComBat method was originally proposed for correcting batch differences in genomic
data13 and was later adapted to other domains like MRI data7,14. ComBat uses Bayesian regres-
sion to find additive (location) and multiplicative (scale) corrections for each feature in each site.
Within the ComBat-based methods, “neuroHarmonize” was proposed15 to allow for the preser-
vation of non-linear covariate effects and has been widely used since4,12,16,17. Although ComBat
and its derivations have been widely applied in medical imaging data, several concerns have
been raised, mainly because ComBat’s hypothesis and assumptions only hold for genomic data,
where it was originally proposed, and may not be fulfilled in other applications fields18. Addi-
tionally, concerns had been raised on the integration of ComBat into ML models, as the location
and scale parameters of the model could not be learned in a subset of data (train data) and then
applied to a new unseen subset of data (test data)19.

Early implementations of ComBat14,20 used the whole dataset to estimate the model’s param-
eters and create a harmonized dataset that is then used from all the downstream analyses. This
approach was used in several works7,8,21–24. While this approach is valid when performing statis-
tical analyses, it is not consistent with machine learning applications where the training and test
data must be separate19,25. Specifically, the parameters of the models, including preprocessing
models, must be obtained on a training set and then applied to the test set. This separation is im-
portant to get realistic estimates of generalization performance (e.g. using cross-validation) and
to ensure deployability of the model in the real world where the test data is not yet available26,27.

ComBat-MAGA28, neuroHarmonize15, and ”harmonizer”19, which is based on neuroHarmo-
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nize, allow the estimation of the model’s parameters in a training set and apply them to the test
samples, however, a critical assumption of ComBat is that all variance not shared across sites is
unwanted site-related variance. Consequently, ComBat removes any variance that is not com-
mon to all sites, including the relevant biological variance. This poses a new problem, as this
assumption is broken when a class imbalance occurs across sites and a target-site dependence
exists, for example when the control patients are acquired in one site and target patients in a
different one29. This could also be extended to other possible biological information like co-
morbidities or disease severity, for example, if more severe patients are consistently treated or
acquired only in one site. In these cases, even though ComBat will provide harmonized data, it
will remove the variance related to the target (control versus patient) as the assumption is that
only non-relevant factors change between sites.

ComBat allows to retain the biologically relevant variables, for example, a diagnosis, the age,
or the sex of a patient, by providing these variables as covariates to be retained. Nonetheless,
this information is needed both when training the model and when applying the model to the test
data. Thus, if target labels need to be preserved, this inevitably leads to the model requiring
the test labels preventing the model’s use in real-world applications where test labels are not
available or known18. This phenomenon where information of the test set is presented to the
models is commonly known as data leakage. It is also well described that leaking the test target
information would produce overconfident results, which could be misleading and can jeopardize
the progress of an entire research field, as researchers who avoid data leakage would not be
able to outperform the models that present data leakage25–27.

In this work, we aim to empirically demonstrate a shortcoming of ComBat-based harmoniza-
tion in site-target dependence scenarios, i.e., that the model can properly harmonize the data
only when test labels are used and data leakage happens. To do so, we performed controlled
experiments for age regression and sex classification using real MRI data for healthy control
individuals. Also using MRI data, a dementia and mild cognitive impairment (MCI) classification
experiment was performed. Additionally, an outcome prediction of septic patients was performed
using clinical data. All experiments were conducted both in site-target dependence and indepen-
dence scenarios. Several harmonization schemes were used and compared, allowing and not
allowing leakage, to harmonize the data.

Finally, to overcome the aforementioned problem, we propose a new harmonization method,
called PRETended Target Y Harmonize (PrettYHarmonize), which allows the users to integrate
ComBat in an ML pipeline, harmonizing the data and generating a prediction without using
the test labels and thus avoiding data leakage. We validated our method using benchmark
datasets3. Additionally, the proposed method was compared with the other harmonization schemes
on the site-target dependence and independence scenarios to comprehensively compare no har-
monization, leakage, and no-leakage methods. The corresponding Python package is publicly
available via GitHub https://github.com/juaml/PrettYharmonize.

Results

0.1 PrettYharmonize validation

The proposed PrettYharmonize method is based on a neuroHarmonize model15 but uses the
combination of two ML models, a Predictive and a Stack model to harmonize the data without
using test labels, preventing data leakage by design. To avoid using the test data labels, the
proposed methods rest on the use of pretended target values, which are used to harmonize
the test data and generate a prediction with the Predictive model. Our main assumption is that
when harmonizing the test data with the correct label, e.g. when the pretended label matches
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the real test label, the neuroHarmonize model will preserve the relevant information. On the
contrary, when the pretended label doesn’t correspond with the real label, the all information
will be removed, both effects of site and biological information, as it was harmonized under
the wrong test label assumption. Then, the Predictive model will generates a more accurate and
Using these predictions as input features, the Stack model generates a final unique prediction for
each sample. As test labels are pretended and not used, predictions can be generated without
requiring test target values. A detailed description of the method workflow is presented in the
Method-PrettYharmonize section.

PrettYharmonize was validated using the datasets specially designed to validate MAREoS3.
This dataset consists of eight internal datasets simulating eighteen MRI features (cortical thick-
ness, cortical surface area, or subcortical volumes). Four datasets contain a “True” signal and
four only contain an Effect of Site (“EoS”) signal related to a binary target, which the MAREoS
should remove to avoid fraudulent classification performance. For each kind of signal, two ”Sim-
ple” and ”Interaction” datasets are proposed, for linear and no-linear relationships between the
features and the target. For each internal dataset, 1000 samples coming from eight different sites
are simulated. An extended data description of this dataset is available in the “Data-MAREoS”
section. On the datasets that presented True signal and no EoS, a Baseline model (Random
Forest), trained on the unharmonized data, obtained a balanced Accuracy (bACC) of around
80%, as expected (colum. This model also obtained a close to 80% bACC on the datasets that
only contained the EoS signal, but this time fraudulently used the EoS signal to perform the
classification (Table 1).

The model successfully removed the EoS in all datasets which only present an EoS signal.
Furthermore, in those datasets where only the True signal was presented, the method did not
degrade the real signal while aiming to remove EoS, which in the True datasets are not presented
(Table 1). Finally, we repeated this analysis to check robustness using three different Predictive
models; Gaussian Process Classifier (GP), Support Vector Machine with Radial basis kernel
(SVM), and least absolute shrinkage and selection operator (LASSO). These yielded similar
results (Tables Supp 1, 2, and 3).

Table 1: PrettYharmonize and Baseline (RF model without harmonization) performance on the
MAREoS dataset (bACC [%]: mean of 10 folds).

Dataset Name Baseline PrettYharmonize Expected Difference
True Simple 1 (no site effect) 72.86 72.07 As Baseline 0.79
True Simple 2 (no site effect) 82.72 82.86 As Baseline 0.06
True Interaction 1 (no site effect) 79.43 79.46 As Baseline 0.03
True Interaction 2 (no site effect) 72.23 70.72 As Baseline 1.51
EoS Simple 1 (no real effect) 76.11 54.18 Chance (50) 5.18
EoS Simple 2 (no real effect) 75.35 52.35 Chance (50) 2.35
EoS Interaction 1 (no real effect) 77.48 56.20 Chance (50) 6.2
EoS Interaction 2 (no real effect) 82.79 58.81 Chance (50) 8.81

0.2 Forced site-target dependence and independence.
To investigate the impact of the harmonization when site and target are dependent or indepen-
dent, different scenarios were generated by thoroughly sampling data from different datasets.
To force site-target dependence, for each site, we retained the majority of samples from one
class and a small number of samples from the other classes. For example, let’s assume a bi-
nary classification problem where only two sites are presented. In this case, from site A, mainly
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samples from class one were retained, and only a few samples from class two. For site B, an
opposite sampling strategy was used, retaining mainly samples from class two and just a few
from class one. The small number of samples from the minority class were retained to avoid
singular matrices, which the algorithms cannot support. In this case, we hypothesize that the
traditional harmonization will remove important information, as the biological variance is related
(or dependent) to the sites, unless test labels are leaked to the harmonization model. In contrast,
site-target independence scenarios were generated by retaining the same amount of samples for
each class sampled from each site. We hypothesize that in this case, the harmonization scheme
will not remove important information, as the biological variance is common to all sites.

A total of seven datasets were used in our experiments. Five datasets [AOMID-ID1000,
eNKI, CamCAN, SALD, and 1000Brains] containing MRI data from healthy control participants
were sampled for age regression and sex classification problems. Using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset30, where the data was collected in different sites, a clas-
sification of healthy controls versus mild cognitive impairment (MCI) / dementia was performed.
Finally, using a publicly available multi-site clinical dataset [eICU]31,32 was used to perform a
a classification of hospital discharge status of septic patients, as this is an important and ex-
tensively studied problem in the literature33–35. An extensive and detailed explanation of all the
datasets and the sampling method used to force site-target dependence and independence is
presented in Section Data description.

Five harmonization schemes were evaluated. The proposed PrettYharmonize model per-
forms leakage-free harmonization while pretending labels (see section Experimental procedures-
PrettYharmonize). Further, two schemes that induce data leakage but have been used in the
literature were implemented. A “Whole Data Harmonization” (WDH) scheme, where the pooled
data from all sites was used to train a neuroHarmonize model (based on ComBat) and to ob-
tain a harmonized dataset before splitting the data into train and test folds. Additionally, a “Test
Target Leakage” (TTL) scheme was used, where a neuroHarmonize model learned its param-
eters only on the training data while retaining target variance and thus requires the test labels
to perform harmonization. Additionally, a scheme called “No Target” was proposed, where the
harmonization model learns its parameters on the train data but without explicitly retaining the
target variance, and thus the test labels were not used for test set harmonization. Finally, a
baseline model without harmonization was implemented, where the pooled data were used un-
harmonized.

0.2.1 Age prediction

For the site-target dependence scenario, from four MRI datasets that contain healthy participants
[AOMIC, eNKI, CamCAN, and 1000Brains] 200 images were extracted from each site in disjoint
age ranges, forcing a site-target dependence. The same proportion of male and female partic-
ipants was retained in each age range. The unharmonized method obtained a Mean Average
Error (MAE) of 6.20 (Table 2), which is in an expected range according to the literature36. The
predictions using the WDH and TTL schemes showed an improvement in the performance of
about 2 years, compared with the unharmonized scheme (Table 2). The harmonization scheme
that does not use the test labels (No Target) showed the highest error. As expected, the harmo-
nization process removed the age-related signal in the features and therefore the ML model was
unable to learn the feature-target relationship and failed to generate accurate predictions. In this
case, the model just predicts the mean population age for all individuals, predicting the individ-
uals to be older in the AOMIC and eNKI datasets and younger in the CamCAN and 1000Brains
datasets (Figure 1a). PrettYharmonize made better predictions, on average, compared with the
unharmonized and No Target methods, improving the MAE, R2, and age bias, and without in-
ducing leakage (Table 2). PrettYharmonize’s performance was similar to the two methods that
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allowed leakage. The individuals’ predictions can be found in the Supplementary Information
Figures Supp 1-5.

For the site-target independence scenario, three datasets [eNKI, CamCAN, and SALD] con-
taining healthy controls were used. The same number of images from each dataset was retained
in the 18-80 age range, maintaining an equal proportion of males/females. The unharmonized
model obtained an MAE of 6.3144, similar to the performance obtained in the site-target depen-
dence scenario (Table 2). Neither PrettYharmonize nor any of the leakage-prone harmonization
schemes (WDH and TTL) showed a performance improvement for any of the sites, compared
to the unharmonized model (Figure 1b). Moreover, the average performance was similar for all
the harmonization schemes including the No Target scheme (Table 2). This result suggests that
the EoS signal was also discarded by the ML model, as it was not related to the target. No-
tably, consistent with our hypothesis, the No Target scheme did not remove important biological
information, as this biologically relevant variance was presented across all sites.

Table 2: Comparison of performance metrics across different harmonization schemes.

Metric Unharmonized PrettYharmonize WDH TTL No Target
Site-target dependence scenario

MAE 6.20 4.12 3.82 4.28 15.93
R2 0.81 0.919 0.925 0.912 -0.007
Age Bias -0.43 -0.26 -0.32 -0.23 -0.998

Site-target independence scenario
MAE 6.314 6.306 6.034 6.153 6.036
R2 0.785 0.769 0.803 0.775 0.790
Age Bias -0.341 -0.423 -0.366 -0.319 -0.361

0.2.2 Sex classification

Two datasets [eNKI and CamCAN] containing healthy controls were used in this experiment were
used for the forced site-target dependence. From the first one, 95% of females were retained,
whereas for the second dataset only 5%, forcing a site-target dependence. In this case, the age
range of the individuals was completely overlapped. The unharmonized scheme obtained a high
performance (AUC = 0.97), which is similar to the performance reported in the literature37. The
harmonization schemes that allow leakage (WDH and TTL) and PrettYharmonize did not show
improvement compared to the unharmonized scheme (Table 3). This can be mainly because the
features carry a strong signal related to the participant’s sex, yielding high performance, even
using unharmonized data. Consistent with the age regression experiment, the harmonization
scheme without test labels (No Target), removed sex-related information significantly reducing
the model’s classification performance (Table 3).

Using the same generated dataset as in the age regression problem for site-target indepen-
dence, a sex classification experiment was performed. The unharmonized scheme obtained a
slightly lower (AUC=0.918) classification performance compared to the sex classification exper-
iment with site-target dependence (Table 3). The harmonization schemes did not show classifi-
cation improvement compared with the unharmonized model (Table 3). The No Target scheme
does not remove target-related variance while harmonizing the features, explaining the similar
performance of this model compared to the other schemes.
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(a) Age regression on site-target dependence scenario.

(b) Age regression on site-target dependence scenario

Figure 1: Age regression a) Site desegregated performance in site-target dependence scenarios.
b) Site desegregated performance in site-target independence scenarios.
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Table 3: Comparison of sex classification performance metrics across different harmonization
schemes.

Metric Unharmonized PrettYharmonize WDH TTL No Target
Site-target dependence scenario

AUC 0.969 0.968 0.975 0.967 0.703
bACC [%] 92.64 92.18 92.10 92.07 63.08
F1 0.923 0.918 0.917 0.917 0.608

Site-target independence scenario
AUC 0.918 0.921 0.913 0.918 0.919
bACC [%] 84.94 85.06 84.64 85.16 84.85
F1 0.851 0.851 0.847 0.852 0.849

0.2.3 Dementia and mild cognitive impairment classification

For the site-target dependence scenarios, 100 dementia-MCI patients and 10 controls from one
site and 100 controls and 10 dementia-MCI on a second site were selected from the ADNI
dataset. The unharmonized method obtained an AUC of 0.81, consistent with other findings in
the literature38. PrettYharmonize and the leakage-prone methods showed a slightly higher clas-
sification performance than the unharmonized method. As observed before, No Target removed
important biological information, jeopardizing the ML model’s performance (Table 4).

For the site-target independence scenario, the same number of control and patients were se-
lected from both sites. In this scenario, all methods obtained a similar classification performance
in all metrics (Table 4). Noteworthy, an important performance drop in all schemes is presented,
compared with the site-target dependant experiment.

Table 4: Classification performance metrics for dementia-MCI prediction task in site-target de-
pendent scenarios.

Unharmonized PrettYharmonize WDH TTL No Target
Site-target dependence scenario

AUC 0.8131 0.8429 0.8385 0.8381 0.6384
bACC [%] 73.7273 77.2727 76.6364 76.3636 60.1818

F1 0.7371 0.7715 0.7644 0.7622 0.6054
Site-target independence scenario

AUC 0.7092 0.7089 0.7118 0.7103 0.7096
bACC [%] 65.68 65.31 66.01 65.85 66.23

F1 0.6698 0.6659 0.6755 0.6742 0.6794

0.2.4 Discharge status prediction of septic patients

From the eICU dataset, 20 sites with more than 50 patients were selected. From these selected
sites, the “Alive” patients were removed from 10 sites and the Expired patients were removed
from the other 10 sites, forcing a site-target relationship. The unharmonized method obtained an
AUC of 0.76, slightly lower than the one obtained in39. However, this difference is expected, as
fewer patients were used in our experiments, compared with the reference study. PrettYharmo-
nize obtained an important AUC performance improvement compared with all the benchmarked
schemes. No Target scheme removed almost all the relevant information, obtaining a practically
by-chance performance (Table 5).
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For the site-target independence scenario, the same 20 sites selected were used, but the
same number of Alive and Expired patients were retained in each site. All methods obtained the
same classification performance in all metrics. The unharmonized method obtained a slightly
lower classification performance (0.72 AUC) compared with the site-target dependence scenario
(0.76 AUC) (Table 5). Furthermore, PrettYharmonize and the leakage-prone schemes (WDH
and TTL) showed a great drop in classification performance, compared with the site-target de-
pendence scenario. Finally, the No Target method did not remove important information while
harmonizing the features, obtaining a similar performance as the rest of the benchmarked meth-
ods.

Table 5: Classification performance metrics for discharge status prediction task in site-target
dependent and independent scenarios.

Unharmonized PrettYharmonize WDH TTL No Target
Site-target dependence scenario

AUC 0.7655 0.8588 0.7995 0.7897 0.5723
bACC [%] 64.37 66.25 63.39 63.91 51.66

F1 0.4571 0.4910 0.4408 0.4517 0.0921
Site-target independence scenario

AUC 0.7227 0.7101 0.7029 0.6907 0.7198
bACC [%] 66.88 66.14 65.25 64.75 66.42

F1 0.6250 0.6295 0.6133 0.6091 0.6211

Discussion

Combining data from differing acquisitions is an appealing, and sometimes only, option for build-
ing ML models as they typically benefit from greater sample sizes. However, it is important to
correctly integrate data harmonization methods, like the widely used ComBat, in ML pipelines19.
In this study, we evaluated several ML pipelines incorporating ComBat-based data harmonization
using a wide variety of biomedical data from different domains for both classification and regres-
sion tasks. Regarding the use of ComBat, feature distribution before and after harmonization is
often analyzed to assess the effectiveness of the harmonization process. While this analysis can
confirm that the features have been adjusted to exhibit more similar distributions, this analysis
alone does not provide sufficient insight into how these adjustments impact the performance of
ML models.

For all the evaluated scenarios, the ML pipelines using unharmonized data showed a per-
formance close to the reported in the literature36–39. Importantly, for the site-target dependence
scenarios, all the unharmonized models showed a better performance compared with the site-
target independent scenarios. This is expected as the ML models can to pick EoS signal, which
is related to the target in the site-target dependence scenarios, and use it to fraudulently increase
the classification performance.

We observed that ComBat-based harmonization struggles to provide benefits when the site
and target variables are independent, even when allowing leakage and the target variance was
preserved in ComBat modelling. None of the harmonization-based ML pipelines showed per-
formance improvement over the baseline of pooling the data together with site-target indepen-
dence. This can be explained because the harmonization may be removing a signal that it is
also discarded by the ML models, as it is not related to the target. In this case, the benefit of
removing the Effect of Site (EoS), did not improve the signal-to-noise ratio of the signal enough
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to benefit the performance of the ML models. Despite the wide variety of tasks and data from
different domains we tested, ComBat-based harmonization does not seem to provide an advan-
tage. Nevertheless, it is possible that our data and task selection, albeit comprehensive, does
not include cases where harmonization can be indeed beneficial.

On the other hand, on the site-target dependence senarios, a performance improvement was
observed when when applying ComBat and allowing the target variance to be preserved. Prob-
lematically, in conventional ways to integrate ComBat in ML pipelines (Whole Data Harmoniza-
tion and Test Target Leakage), this leads to data leakage as the test labels are used. Whereas
not explicitly preserving the target (No Target), the performance was consistently worse. These
observations can be explained as ComBat works on the assumption that the site-specific vari-
ance and variance of interest are independent. However, this assumption is violated when the
site and target are dependent. Consequently, when the site and target are dependent, using
ComBat without explicitly preserving the target variance can remove variance related to the tar-
get.

The proposed a new method called PrettYharmonize avoids leakage by design, as it relays
in the harmonization using pretended target labels and a Stack model, which combines the
predictions made with the different harmonized data. In this way, the method can circumvent
the need for target values of the test samples. PrettYharmonize was validated on the MAREoS
datasets which were specifically devised for this purpose. The solid results obtained in this
dataset indicate that the proposed method effectively harmonizes data without compromising
model integrity. The method provides a leakage-free pipeline which in our evaluations showed
performs at par with leakage-prone pipelines. These findings suggest that PrettYharmonize
holds promise for real-world deployment, particularly in contexts where data leakage is a critical
concern. Therefore, we recommend PrettYharmonize for future use cases. Overall, our results
suggest that future studies should carefully evaluate their ML pipelines and follow reproducible
and open science practices for the benefit of the community.

Alternative approaches such as calculating ComBat parameters using phantoms18 can har-
monize data independent of biological variability. By doing so, the location and scale parameters
specific to each MRI setup and parameter setting can be accurately estimated and applied to
real data. This approach mitigates the risk of inadvertently removing meaningful biological varia-
tion during harmonization. However, such approaches are domain-specific and incur challenges
such as measuring additional data.

Finally, although our study focused on widely used ComBat-based methods, it is important
to acknowledge the existence of other harmonization techniques, such as deep learning-based
methods like style-matching generative models or variational autoencoders4. These approaches
may offer promising alternatives, particularly in complex scenarios where traditional methods
may fall short though they tend to be data and compute-intensive.

Limitations of the study
This study has some limitations that should be considered when interpreting the results. First,
our analysis focuses primarily on ComBat-based harmonization methods due to their widespread
use; however, we did not extensively explore other emerging techniques such as deep learning,
optimal transport, or style-matching generative models, which offer different strengths and weak-
nesses.

Second, the impact of harmonization on feature selection and model interpretability was not
deeply explored, warranting further investigation into how these methods influence model be-
havior in different contexts.

Third, even though in a controlled fashion we simulated somewhat extreme site-target depen-
dence and independence scenarios, it is safe to assume that any real-case scenario will fall in
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between. Our aim in this study was to empirically demonstrate the problems that may occur while
harmonizing the data without factoring in appropriate considerations. Further research should
be conducted to better measure the relationship between the site-target dependence degree and
the harmonization impact.

Finally, regarding PrettYharmonize, the proposed method is more computationally expensive
than the traditional harmonization schemes because in the “pretending” process the data need
to be harmonized several times.

Experimental procedures

Resource availability

Lead contact

Please send any inquiry to the corresponding author, Nicolás Nieto (n.nieto@fz-juelich.de)

Materials availability

No materials were used in this work.

Data and code availability

All used MRI datasets are publicly available possibly upon registration. For the eICU dataset,
data is publicly available at https://physionet.org/content/eicu-crd/2.0/ after registration.
Registration includes the completion of a training course in research with human individuals at
https://about.citiprogram.org/ and signing of a data use agreement mandating responsible
handling of the data and adhering to the principle of collaborative research.

The library is publicly available at: https://github.com/juaml/PrettYharmonize. The scripts
to replicate the experiments and replicate the processing of the datasets are available at: https:
//github.com/juaml/harmonize_project

Data description

MAREoS dataset
To ensure the validity of PrettYharmonize, we benchmarked it in a classification problem using
the datasets specifically designed to evaluate harmonization models3. This MAREoS dataset
consists of eight datasets simulating 18 MRI features (cortical thickness, cortical surface area, or
subcortical volumes). Four datasets contain a “True” signal and four only contain an Effect of Site
(“EoS”) signal related to a binary target. In that sense, an ML model that learns the “EoS” signal
can fraudulently achieve a good classification performance. The signal, both the True or EoS,
are called “Simple” and “Interactions”, depending on a linear or non-linear effect, respectively.
Within each dataset, approximately 1000 samples, coming from 8 sites, were simulated. The
datasets are provided as 10 train and test fold pairs. For the dataset containing only the EoS,
the methods should be able to remove this effect and the classification performance should be at
the chance level, i.e. balanced accuracy (bACC) of 50%. On the other hand, in the dataset with
only the True signal, the harmonization models should not degrade the signal, and the bACC is
expected to be a high value (bACC ≈ 80%).
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MRI data
To empirically compare different harmonization schemes with and without site-target depen-
dence, age regression, and sex classification were performed using MRI data. These targets
were used as they are highly reliable and can be easily obtained. For all T1-weighted MR
images, Voxel-Based Morphometry was performed using CAT12.840 to obtain modulated gray
matter (GM) volume, which was then linearly resampled to 8x8x8 mm3 voxels, resulting in 3747
voxels that were used as features. Five datasets were used: Amsterdam Open MRI Collec-
tion (AOMIC-ID1000)41, The Enhanced Nathan Kline Institute (eNKI)42, Cambridge Centre for
Ageing Neuroscience (CamCAN)43, 1000Brains44, and the Southwest University Adult Lifespan
Dataset (SALD)45. These datasets were selected as the data within each dataset was acquired
only in one site thus avoiding additional confounding. The demographic information of these
datasets is presented in Table 6.

Table 6: Characteristics of the original MRI datasets used in the study.

Dataset Name N Images Mean Age Std Age Min Age Max Age % Female
AOMIC-ID1000 928 22.85 1.71 19 26 52%
eNKI 818 46.90 17.73 19 85 65%
CamCAN 651 54.27 18.59 18 88 50%
1000Brains 1144 61.84 12.39 21 85 55%
SALD 494 45.18 17.44 19 80 62%

Age regression

0.2.4.1 Forced site-target dependence.

Four datasets, AOMIC-ID1000, eNKI, CamCAN, and 1000Brains, were randomly subsampled in
different age ranges forcing a site-target dependence. The subsample was performed to ensure
the same amount of subjects by each sex in each dataset (Table 7).

Table 7: Dataset characteristics for site-target dependent age regression experiment.

Dataset Name N Images Mean Age Std Age Min Age Max Age % Female
AOMIC-ID1000 118 22.73 1.61 19 26 50%
eNKI 118 33.00 3.95 27 40 50%
CamCAN 118 50.09 6.06 41 60 50%
1000Brains 118 68.74 5.02 61 79 50%

0.2.4.2 Forced site-target independence.

Three datasets, CamCAN, eNIKI, and SALD, were used. The datasets were selected as they
contain individuals covering a wide range of ages above 18. The AOMIC and 1000Brains
datasets were excluded as those datasets mainly included young and old participants, respec-
tively. Each dataset was balanced in terms of sex and age (Table 8). This was achieved by
retaining the same number of subjects for each sex in 10 equally distributed age ranges, from
the minimum to the maximum age in each dataset.
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Table 8: Dataset characteristics for site-target independent age regression and sex classification
experiments.

Dataset N Images Mean Age Std Age Min Age Max Age % Female
SALD 200 48.99 16.97 19 77 50%
eNKI 300 47.75 17.43 18 78 50%
CamCAN 288 48.60 18.00 18 78 50%

0.2.5 Sex classification

For this experiment, only the eNKI and CamCAN datasets were used, as those present a broad
and similar age range. In this case, the percentages of females in each dataset were forced to
be 95% in eNKI and 5% in CamCAN (Table 9). Additionally, the same number of images for each
dataset was retained.

Table 9: Dataset characteristics for site-target dependent sex classification experiment.

Dataset Name N Images Mean Age Std Age Min Age Max Age % Female
eNKI 295 45.13 18.93 19 84 5%
CamCAN 295 53.77 18.51 18 88 95%

0.2.5.1 Forced site-target independence

The same dataset generated in the site-target independence scenario for age regression was
used for sex classification.

0.2.6 Dementia and mild cognitive impairment classification

0.2.6.1 Forced site-target dependence

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

In our experiments using the ADNI dataset, where the data were acquired in different sites,
we selected 100 dementia-MCI patients and 10 controls from one site. We selected 100 control
patients and 10 dementia-MCi patients from another site, again forcing the site-target relationship
(Table 10). The images were processed with FreeSurfer46. The thickness from 74 cerebral and
sub-cerebral structures were extracted as features.

Table 10: Datasets characteristics for site-target dependent Dementia-MCI classification experi-
ment

Dataset name N Images Mean Age Std Age Min Age Max Age % Dementia-MCI
Site 1 110 75.182 6.667 59 92 9 %
Site 2 110 72.331 5.560 60 97 91 %
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Table 11: Datasets characteristics for site-target independent dementia-MCI classification exper-
iment

Dataset ID N Images Mean Age Std Age Min Age Max Age % Dementia-MCI
Site 1 252 73.72 6.582 59 93 50 %
Site 2 114 72.68 6.448 56 96 50 %

0.2.6.2 Forced site-target independence

Using the ADNI dataset the same extracted features were used. From the dataset, 126 dementia-
MCI and control patients were randomly selected from the first site while 56 dementia-MCI and
control patients were randomly selected from the second site (Table 11).

0.2.7 Discharge status prediction of septic patients

0.2.8 Forced site-target dependence

The eICU31,32,47 dataset was used for the experiments, which contains 200859 ICU stays from
139367 patients in 208 different ICUs across the United States. We use a well-known problem of
classified hospital discharge (Expired or Alive), in septic patients48,49. The approach described
in39 was followed for selecting the features and extracting the patient cohort. The features used
were arterial blood gases: paO2, paCO2, pH, base excess, Hgb, glucose, bicarbonate, and
lactate. After the patients’ selection, a final dataset of 496 Expired and 3021 Alive patients was
retained. From this filtered dataset, we remove those sites with less than 50 stays, retaining 20
final sites.

From 20 of these sites, all “Alive” patients, except for one, were removed for the 10 sites with
more “Expired” patients. Contrary, all the “Expired” patients, except for one, were removed from
the 10 sites with less number of “Expired” patients. Note that in this case, the classes (Alive and
Expired) are represented in several sites and are not the same in each site (Table 12), compared
with the previous classification experiments performed. A total of 249 Expired and 666 Alive
patients were used in this experiment.

0.2.9 Forced site-target independence

From the eICU, the same features extraction and patient selection were made (496 Expired and
3021 Alive patients). The same 20 sites, with more than 50 images, were used.

From all sites, the same number of “Alive” and “Expired” patients were retained. A total of
324 Expired and 324 Alive patients were used in this experiment (Table 13).

Methods

PrettYHarmonize
The proposed method rests on the use of “pretended” target values on the harmonization pro-
cess, thereby enabling predictions without requiring test target values (Figure 2). For our exper-
iments, the available data is divided into train and test, simulating a real use case. The training
fold is further divided into inner train and validation folds. A neuroHarmonize model is trained on
the inner training data to learn to remove the site’s effect. The inner training data is harmonized
and a Predictive model is trained on the harmonized inner train data to predict the target. This
model needs to be chosen as the best possible model to solve the problem at hand.
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Table 12: Datasets characteristics for site-target dependent outcome prediction on septic pa-
tients experiment

Dataset ID N Images Alive Count Expired Count % Expired
Site 79 92 91 1 1.08 %
Site 148 69 68 1 1.14 %
Site 15 56 55 1 1.17 %
Site 157 14 1 13 92.85 %
Site 165 15 1 14 93.33 %
Site 167 21 1 20 95.54 %
Site 176 111 110 1 0.90 %
Site 188 32 1 31 96.87 %
Site 248 55 54 1 1.82 %
Site 252 27 1 26 96.30 %
Site 264 17 1 16 94.12 %
Site 300 69 68 1 1.45 %
Site 345 55 54 1 1.82 %
Site 365 58 57 1 1.72 %
Site 416 15 1 14 93.33 %
Site 420 65 1 64 98.46 %
Site 443 58 57 1 1.72 %
Site 449 18 1 17 94.44 %
Site 452 43 42 1 2.33 %
Site 458 24 1 23 95.83 %

Total 915 666 249 27.21 %
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Table 13: Datasets characteristics for site-target independent outcome prediction on septic pa-
tients experiment

Dataset ID N Images Alive Count Expired Count % Expired
Site 79 20 10 10 50 %
Site 148 24 12 12 50 %
Site 154 18 9 9 50 %
Site 157 26 13 13 50 %
Site 165 28 14 14 50 %
Site 167 42 21 21 50 %
Site 176 14 7 7 50 %
Site 188 62 31 31 50 %
Site 248 26 13 13 50 %
Site 252 52 26 26 50 %
Site 264 32 16 16 50 %
Site 300 12 6 6 50 %
Site 345 8 4 4 50 %
Site 365 8 4 4 50 %
Site 416 28 14 14 50 %
Site 420 128 64 64 50 %
Site 443 22 11 11 50 %
Site 449 34 17 17 50 %
Site 452 18 9 9 50 %
Site 458 46 23 23 50 %

Total 648 324 324 50 %
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Figure 2: PrettYharmonize training workflow. The workflow showcases the training workflow for
a binary classification problem.

Using the trained neuroHarmonize model, the validation samples are harmonized while “pre-
tending” their target value. For example, for a binary classification problem, all the validation
labels are set as the first class, pretending that all validation samples belong to the first class.
Using these “pretended” labels, the validation data is harmonized and a prediction is made using
the trained Predictive model. Later, the validation labels are set to the second class and the vali-
dation data is harmonized again and a new prediction is generated. In general, for a classification
task, the set of available classes is pretended, while for a regression task, the values are linearly
sampled in the target’s range. All the predictions, generated with the pretended harmonized
data, are concatenated and a “Score matrix” is created. This matrix has a dimension of number
of validation samples times the number of labels. To effectively utilize the training dataset, a
K-fold cross-validation (CV) procedure was employed, generating out-of-sample predictions for
the entire dataset. Using this Score matrix as input features, a “Stack” model is trained to predict
the target and give a final prediction.

At the test time, when the test label is not available, the same procedure is followed. For
example, in a binary classification problem, a test sample will be harmonized using the neuro-
Harmonize model first pretending that the test label belongs to the first class. The Predict model
will generate a prediction using the harmonized data and the process will be repeated pretending
the test sample belongs to the second class. Both predictions generated by the Predictive model
are concatenated and a test Score matrix is built. This matrix is used by the Stack model, which
generates the final prediction.
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0.3 Machine learning model
For the binary classification problem using the synthetic data (MAREoS datasets), a Random
Forest model (RF)50, with default sklearn parameters, was used as a Predictive Model, and a
Logistic Regression (LG)51 was used as a Stack Model. The same RF model was used to train a
model with the original data to obtain a classification baseline for each dataset (Baseline model).

For the age regression problems using real MRI data, Relevance Vector Regression52 with a
polynomial kernel of degree 1 (RVR) was used as a Predictive and Stack model for PrettYhar-
monize. The RVR model was used for the rest of the harmonization schemes36. A 5-fold cross-
validation scheme was used, and the Mean Absolute Error (MAE), coefficient of determination
(R2), and age bias (Pearson’s correlation between the true age and the difference between the
predicted and true age) were calculated on the test sets.

For the sex classification using real MRI data, RVR was used as a Predictive and Stack
model. A 5 times repeated 5-fold stratified cross-validation scheme was used, and the Area
under the receive operation curve (AUC), balanced accuracy (bACC) and were calculated on the
test

Supplemental information

In the Supplementary Information Tables S1-S3 and Figures S1-S5 and their legends are pre-
sented.
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14. Fortin, J.-P., Parker, D., Tunç, B., Watanabe, T., Elliott, M. A., Ruparel, K., Roalf, D. R.,
Satterthwaite, T. D., Gur, R. C., Gur, R. E. et al. (2017). Harmonization of multi-site diffusion
tensor imaging data. Neuroimage 161, 149–170.

15. Pomponio, R., Erus, G., Habes, M., Doshi, J., Srinivasan, D., Mamourian, E., Bashyam, V.,
Nasrallah, I., Satterthwaite, T., Fan, Y. et al. (2019). Harmonization of large mri datasets
for the analysis of brain imaging patterns throughout the lifespan. neuroimage, 208, article
116450.

16. Yu, M., Linn, K. A., Cook, P. A., Phillips, M. L., McInnis, M., Fava, M., Trivedi, M. H., Weiss-
man, M. M., Shinohara, R. T., and Sheline, Y. I. (2018). Statistical harmonization corrects
site effects in functional connectivity measurements from multi-site fmri data. Human brain
mapping 39, 4213–4227.

17. Dudley, J. A., Maloney, T. C., Simon, J. O., Atluri, G., Karalunas, S. L., Altaye, M., Epstein,
J. N., and Tamm, L. (2023). Abcd harmonizer: An open-source tool for mapping and con-
trolling for scanner induced variance in the adolescent brain cognitive development study.
Neuroinformatics 21, 323–337.

18. Ibrahim, A., Primakov, S., Beuque, M., Woodruff, H., Halilaj, I., Wu, G., Refaee, T., Granzier,
R., Widaatalla, Y., Hustinx, R. et al. (2021). Radiomics for precision medicine: Current
challenges, future prospects, and the proposal of a new framework. Methods 188, 20–29.

19. Marzi, C., Giannelli, M., Barucci, A., Tessa, C., Mascalchi, M., and Diciotti, S. (2024). Effi-
cacy of mri data harmonization in the age of machine learning: a multicenter study across
36 datasets. Scientific Data 11, 115.

20



20. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput exper-
iments. Bioinformatics 28, 882–883.

21. Barth, C., Kelly, S., Nerland, S., Jahanshad, N., Alloza, C., Ambrogi, S., Andreassen, O. A.,
Andreou, D., Arango, C., Baeza, I. et al. (2023). In vivo white matter microstructure in
adolescents with early-onset psychosis: a multi-site mega-analysis. Molecular Psychiatry
28, 1159–1169.

22. Bourbonne, V., Jaouen, V., Nguyen, T. A., Tissot, V., Doucet, L., Hatt, M., Visvikis, D.,
Pradier, O., Valéri, A., Fournier, G. et al. (2021). Development of a radiomic-based model
predicting lymph node involvement in prostate cancer patients. Cancers 13, 5672.

23. Campello, V. M., Martı́n-Isla, C., Izquierdo, C., Guala, A., Palomares, J. F. R., Viladés, D.,
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