001038499 001__ 1038499
001038499 005__ 20250220092007.0
001038499 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01494
001038499 037__ $$aFZJ-2025-01494
001038499 1001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b0$$eCorresponding author
001038499 245__ $$aThe impact of MRI image quality on statistical and predictive analysis on voxel based morphology
001038499 260__ $$c2024
001038499 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739257006_2007
001038499 3367_ $$2ORCID$$aWORKING_PAPER
001038499 3367_ $$028$$2EndNote$$aElectronic Article
001038499 3367_ $$2DRIVER$$apreprint
001038499 3367_ $$2BibTeX$$aARTICLE
001038499 3367_ $$2DataCite$$aOutput Types/Working Paper
001038499 520__ $$aImage Quality of MRI brain scans is strongly influenced by within scanner head movements and the resulting image artifacts alter derived measures like brain volume and cortical thickness. Automated image quality assessment is key to controlling for confounding effects of poor image quality. In this study, we systematically test for the influence of image quality on univariate statistics and machine learning classification. We analyzed group effects of sex/gender on local brain volume and made predictions of sex/gender using logistic regression, while correcting for brain size. From three large publicly available datasets, two age and sex-balanced samples were derived to test the generalizability of the effect for pooled sample sizes of n=760 and n=1094. Results of the Bonferroni corrected t-tests over 3747 gray matter features showed a strong influence of low-quality data on the ability to find significant sex/gender differences for the smaller sample. Increasing sample size and more so image quality showed a stark increase in detecting significant effects in univariate group comparisons. For the classification of sex/gender using logistic regression, both increasing sample size and image quality had a marginal effect on the Area under the Receiver Operating Characteristic Curve for most datasets and subsamples. Our results suggest a more stringent quality control for univariate approaches than for multivariate classification with a leaning towards higher quality for classical group statistics and bigger sample sizes for machine learning applications in neuroimaging.
001038499 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001038499 536__ $$0G:(EU-Grant)101058516$$aeBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516)$$c101058516$$fHORIZON-INFRA-2021-TECH-01$$x1
001038499 588__ $$aDataset connected to DataCite
001038499 7001_ $$0P:(DE-Juel1)194707$$aNieto, Nicolas$$b1
001038499 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b2
001038499 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b3$$eLast author
001038499 773__ $$y2024
001038499 8564_ $$uhttps://arxiv.org/abs/2411.01268
001038499 8564_ $$uhttps://juser.fz-juelich.de/record/1038499/files/2411.01268v1%281%29.pdf$$yOpenAccess
001038499 909CO $$ooai:juser.fz-juelich.de:1038499$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001038499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b0$$kFZJ
001038499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194707$$aForschungszentrum Jülich$$b1$$kFZJ
001038499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b2$$kFZJ
001038499 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b2
001038499 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b2
001038499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b3$$kFZJ
001038499 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001038499 9141_ $$y2024
001038499 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038499 920__ $$lyes
001038499 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001038499 980__ $$apreprint
001038499 980__ $$aVDB
001038499 980__ $$aUNRESTRICTED
001038499 980__ $$aI:(DE-Juel1)INM-7-20090406
001038499 9801_ $$aFullTexts