001038532 001__ 1038532
001038532 005__ 20250131215341.0
001038532 0247_ $$2arXiv$$aarXiv:2501.04612
001038532 037__ $$aFZJ-2025-01517
001038532 088__ $$2arXiv$$aarXiv:2501.04612
001038532 1001_ $$0P:(DE-HGF)0$$aBesedin, Ilya$$b0
001038532 245__ $$aRealizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits
001038532 260__ $$c2025
001038532 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738310868_12722
001038532 3367_ $$2ORCID$$aWORKING_PAPER
001038532 3367_ $$028$$2EndNote$$aElectronic Article
001038532 3367_ $$2DRIVER$$apreprint
001038532 3367_ $$2BibTeX$$aARTICLE
001038532 3367_ $$2DataCite$$aOutput Types/Working Paper
001038532 500__ $$a19 pages, 13 figures
001038532 520__ $$aQuantum error correction is needed for quantum computers to be capable of fault-tolerantly executing algorithms using hundreds of logical qubits. Recent experiments have demonstrated subthreshold error rates for state preservation of a single logical qubit. In addition, the realization of universal quantum computation requires the implementation of logical entangling gates. Lattice surgery offers a practical approach for implementing such gates, particularly in planar quantum processor layouts. In this work, we demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit. Using a quantum circuit fault-tolerant to bit-flip errors, we achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit. By preparing the surface-code qubit in initial states parametrized by a varying polar angle, we evaluate the performance of the lattice surgery operation for non-cardinal states on the logical Bloch sphere and employ logical two-qubit tomography to reconstruct the Pauli transfer matrix of the operation. In this way, we demonstrate the functional building blocks needed for lattice surgery operations on larger-distance codes based on superconducting circuits.
001038532 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038532 588__ $$aDataset connected to arXivarXiv
001038532 7001_ $$0P:(DE-HGF)0$$aKerschbaum, Michael$$b1
001038532 7001_ $$0P:(DE-HGF)0$$aKnoll, Jonathan$$b2
001038532 7001_ $$0P:(DE-HGF)0$$aHesner, Ian$$b3
001038532 7001_ $$0P:(DE-Juel1)181090$$aBödeker, Lukas$$b4$$ufzj
001038532 7001_ $$0P:(DE-HGF)0$$aColmenarez, Luis$$b5
001038532 7001_ $$0P:(DE-HGF)0$$aHofele, Luca$$b6
001038532 7001_ $$0P:(DE-HGF)0$$aLacroix, Nathan$$b7
001038532 7001_ $$0P:(DE-HGF)0$$aHellings, Christoph$$b8
001038532 7001_ $$0P:(DE-HGF)0$$aSwiadek, François$$b9
001038532 7001_ $$0P:(DE-HGF)0$$aFlasby, Alexander$$b10
001038532 7001_ $$0P:(DE-HGF)0$$aPanah, Mohsen Bahrami$$b11
001038532 7001_ $$aZanuz, Dante Colao$$b12
001038532 7001_ $$0P:(DE-Juel1)204218$$aMüller, Markus$$b13$$eCorresponding author$$ufzj
001038532 7001_ $$0P:(DE-HGF)0$$aWallraff, Andreas$$b14
001038532 909CO $$ooai:juser.fz-juelich.de:1038532$$pVDB
001038532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181090$$aForschungszentrum Jülich$$b4$$kFZJ
001038532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204218$$aForschungszentrum Jülich$$b13$$kFZJ
001038532 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038532 9141_ $$y2025
001038532 920__ $$lyes
001038532 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038532 980__ $$apreprint
001038532 980__ $$aVDB
001038532 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038532 980__ $$aUNRESTRICTED