001     1038532
005     20250131215341.0
024 7 _ |a arXiv:2501.04612
|2 arXiv
037 _ _ |a FZJ-2025-01517
088 _ _ |a arXiv:2501.04612
|2 arXiv
100 1 _ |a Besedin, Ilya
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738310868_12722
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 19 pages, 13 figures
520 _ _ |a Quantum error correction is needed for quantum computers to be capable of fault-tolerantly executing algorithms using hundreds of logical qubits. Recent experiments have demonstrated subthreshold error rates for state preservation of a single logical qubit. In addition, the realization of universal quantum computation requires the implementation of logical entangling gates. Lattice surgery offers a practical approach for implementing such gates, particularly in planar quantum processor layouts. In this work, we demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit. Using a quantum circuit fault-tolerant to bit-flip errors, we achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit. By preparing the surface-code qubit in initial states parametrized by a varying polar angle, we evaluate the performance of the lattice surgery operation for non-cardinal states on the logical Bloch sphere and employ logical two-qubit tomography to reconstruct the Pauli transfer matrix of the operation. In this way, we demonstrate the functional building blocks needed for lattice surgery operations on larger-distance codes based on superconducting circuits.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Kerschbaum, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Knoll, Jonathan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hesner, Ian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bödeker, Lukas
|0 P:(DE-Juel1)181090
|b 4
|u fzj
700 1 _ |a Colmenarez, Luis
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hofele, Luca
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lacroix, Nathan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hellings, Christoph
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Swiadek, François
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Flasby, Alexander
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Panah, Mohsen Bahrami
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zanuz, Dante Colao
|b 12
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)204218
|b 13
|e Corresponding author
|u fzj
700 1 _ |a Wallraff, Andreas
|0 P:(DE-HGF)0
|b 14
909 C O |o oai:juser.fz-juelich.de:1038532
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)181090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)204218
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21