001038534 001__ 1038534
001038534 005__ 20250131215341.0
001038534 0247_ $$2arXiv$$aarXiv:2501.05527
001038534 037__ $$aFZJ-2025-01519
001038534 088__ $$2arXiv$$aarXiv:2501.05527
001038534 1001_ $$0P:(DE-HGF)0$$aSchmid, Ludwig$$b0
001038534 245__ $$aDeterministic Fault-Tolerant State Preparation for Near-Term Quantum Error Correction: Automatic Synthesis Using Boolean Satisfiability
001038534 260__ $$c2025
001038534 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738310881_12722
001038534 3367_ $$2ORCID$$aWORKING_PAPER
001038534 3367_ $$028$$2EndNote$$aElectronic Article
001038534 3367_ $$2DRIVER$$apreprint
001038534 3367_ $$2BibTeX$$aARTICLE
001038534 3367_ $$2DataCite$$aOutput Types/Working Paper
001038534 500__ $$a7 pages, 4 figures, accepted at DATE 2025
001038534 520__ $$aTo ensure resilience against the unavoidable noise in quantum computers, quantum information needs to be encoded using an error-correcting code, and circuits must have a particular structure to be fault-tolerant. Compilation of fault-tolerant quantum circuits is thus inherently different from the non-fault-tolerant case. However, automated fault-tolerant compilation methods are widely underexplored, and most known constructions are obtained manually for specific codes only. In this work, we focus on the problem of automatically synthesizing fault-tolerant circuits for the deterministic initialization of an encoded state for a broad class of quantum codes that are realizable on current and near-term hardware. To this end, we utilize methods based on techniques from classical circuit design, such as satisfiability solving, resulting in tools for the synthesis of (optimal) fault-tolerant state preparation circuits for near-term quantum codes. We demonstrate the correct fault-tolerant behavior of the synthesized circuits using circuit-level noise simulations. We provide all routines as open-source software as part of the Munich Quantum Toolkit (MQT) at https://github.com/cda-tum/mqt-qecc.
001038534 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038534 588__ $$aDataset connected to arXivarXiv
001038534 7001_ $$0P:(DE-HGF)0$$aPeham, Tom$$b1
001038534 7001_ $$0P:(DE-HGF)0$$aBerent, Lucas$$b2
001038534 7001_ $$0P:(DE-Juel1)204218$$aMüller, Markus$$b3$$eCorresponding author$$ufzj
001038534 7001_ $$0P:(DE-HGF)0$$aWille, Robert$$b4
001038534 909CO $$ooai:juser.fz-juelich.de:1038534$$pVDB
001038534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204218$$aForschungszentrum Jülich$$b3$$kFZJ
001038534 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038534 9141_ $$y2025
001038534 920__ $$lyes
001038534 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038534 980__ $$apreprint
001038534 980__ $$aVDB
001038534 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038534 980__ $$aUNRESTRICTED