001038538 001__ 1038538
001038538 005__ 20250220092007.0
001038538 0247_ $$2doi$$a10.21203/rs.3.rs-5219295/v1
001038538 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01523
001038538 037__ $$aFZJ-2025-01523
001038538 1001_ $$0P:(DE-HGF)0$$aHong, Seok-Jun$$b0$$eCorresponding author
001038538 245__ $$aIn vivo cartography of state-dependent signal flow hierarchy in the human cerebral cortex
001038538 260__ $$c2024
001038538 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1739258166_5042
001038538 3367_ $$2ORCID$$aWORKING_PAPER
001038538 3367_ $$028$$2EndNote$$aElectronic Article
001038538 3367_ $$2DRIVER$$apreprint
001038538 3367_ $$2BibTeX$$aARTICLE
001038538 3367_ $$2DataCite$$aOutput Types/Working Paper
001038538 520__ $$aUnderstanding the principle of information flow across distributed brain networks is of paramount importance in neuroscience. Here, we introduce a novel neuroimaging framework, leveraging integrated effective connectivity (iEC) and unconstrained signal flow mapping for data-driven discovery of the human cerebral functional hierarchy. Simulation and empirical validation demonstrated the high fidelity of iEC in recovering connectome directionality and its potential relationship with histologically defined feedforward and feedback pathways. Notably, the iEC-derived hierarchy displayed a monotonously increasing level along the axis where the sensorimotor, association, and paralimbic areas are sequentially ordered – a pattern supported by the Structural Model of laminar connectivity. This hierarchy was further demonstrated to flexibly reorganize according to brain states, flattening during an externally oriented condition, evidenced by a reduced slope in the hierarchy, and steepening during an internally focused condition, reflecting heightened engagement of interoceptive regions. Our study highlights the unique role of macroscale directed functional connectivity in uncovering a neurobiologically grounded, state-dependent signal flow hierarchy.
001038538 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001038538 588__ $$aDataset connected to CrossRef
001038538 7001_ $$0P:(DE-HGF)0$$aOh, Younghyun$$b1
001038538 7001_ $$0P:(DE-HGF)0$$aAnn, Yejin$$b2
001038538 7001_ $$0P:(DE-HGF)0$$aLee, Jae-Joong$$b3
001038538 7001_ $$0P:(DE-HGF)0$$aIto, Takuya$$b4
001038538 7001_ $$0P:(DE-HGF)0$$aFroudist-Walsh, Sean$$b5
001038538 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b6
001038538 7001_ $$0P:(DE-HGF)0$$aMilham, Michael$$b7
001038538 7001_ $$0P:(DE-HGF)0$$aSpreng, R. Nathan$$b8
001038538 7001_ $$0P:(DE-HGF)0$$aMargulies, Daniel$$b9
001038538 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris$$b10
001038538 7001_ $$0P:(DE-HGF)0$$aWoo, Choong-Wan$$b11
001038538 773__ $$a10.21203/rs.3.rs-5219295/v1
001038538 8564_ $$uhttps://juser.fz-juelich.de/record/1038538/files/Hong%20et%20al%20363d0781-5800-407d-add0-2c6ac7ab3afd.pdf$$yOpenAccess
001038538 909CO $$ooai:juser.fz-juelich.de:1038538$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001038538 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Sungkyunkwan University$$b0
001038538 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Sungkyunkwan University$$b3
001038538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b6$$kFZJ
001038538 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001038538 9141_ $$y2024
001038538 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001038538 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001038538 920__ $$lyes
001038538 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001038538 9801_ $$aFullTexts
001038538 980__ $$apreprint
001038538 980__ $$aVDB
001038538 980__ $$aUNRESTRICTED
001038538 980__ $$aI:(DE-Juel1)INM-7-20090406