001038543 001__ 1038543
001038543 005__ 20250131215341.0
001038543 0247_ $$2arXiv$$aarXiv:2412.20257
001038543 037__ $$aFZJ-2025-01526
001038543 088__ $$2arXiv$$aarXiv:2412.20257
001038543 1001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago Lucena Macedo$$b0$$ufzj
001038543 245__ $$aComputing the graph-changing dynamics of loop quantum gravity
001038543 260__ $$c2025
001038543 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738313124_12726
001038543 3367_ $$2ORCID$$aWORKING_PAPER
001038543 3367_ $$028$$2EndNote$$aElectronic Article
001038543 3367_ $$2DRIVER$$apreprint
001038543 3367_ $$2BibTeX$$aARTICLE
001038543 3367_ $$2DataCite$$aOutput Types/Working Paper
001038543 500__ $$a5 pages, 2 figures
001038543 520__ $$aIn loop quantum gravity (LQG), quantum states of the gravitational field are represented by labelled graphs called spinnetworks. Their dynamics can be described by a Hamiltonian constraint, which modifies the spinnetwork graphs. Fixed graph approximations of the dynamics have been extensively studied, but its full graph-changing action so far remains elusive. The latter, alongside the solutions of its constraint, are arguably the missing features to access physically correct quantum-relativistic phenomenology from canonical LQG. Here, we introduce the first numerical tool that implements graph-changing dynamics via the Hamiltonian constraint. We find new solutions to this constraint and show that some quantum-geometrical observables behave differently than in the graph-preserving truncation. This work aims at fostering a new era of numerical simulations in canonical LQG that, crucially, embrace the graph-changing aspects of its dynamics, laying aside debated approximations.
001038543 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038543 588__ $$aDataset connected to arXivarXiv
001038543 7001_ $$0P:(DE-HGF)0$$aMarugán, Guillermo A. Mena$$b1
001038543 7001_ $$0P:(DE-HGF)0$$aVidotto, Francesca$$b2
001038543 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$eCorresponding author$$ufzj
001038543 909CO $$ooai:juser.fz-juelich.de:1038543$$pVDB
001038543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b0$$kFZJ
001038543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
001038543 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038543 9141_ $$y2025
001038543 920__ $$lyes
001038543 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038543 980__ $$apreprint
001038543 980__ $$aVDB
001038543 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038543 980__ $$aUNRESTRICTED