001     1038546
005     20250220092007.0
024 7 _ |a 10.1101/2024.11.26.625368
|2 doi
037 _ _ |a FZJ-2025-01529
100 1 _ |a Sasse, Leonard
|0 P:(DE-Juel1)190306
|b 0
245 _ _ |a Procrustes Alignment in Individual-level Analyses of Functional Gradients
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1739258005_5042
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Functional connectivity (FC) gradients provide valuable insights into individual differences in brain organization, yet aligning these gradients across individuals poses challenges. Procrustes alignment is often employed to standardize gradients across multiple subjects, but the choice of the number of gradients used in alignment introduces complexities that may impact individual-level analyses. In this study, we systematically investigate the impact of varying gradient counts in Procrustes alignment on the principal FC gradient, using data from four resting state fMRI datasets, including the Human Connectome Project (HCP-YA), Amsterdam Open MRI Collection (AOMIC) PIOP1 and PIOP2, and Cambridge Centre for Ageing and Neuroscience (Cam-CAN). We find that increasing the number of gradients used in alignment enhances identification accuracy but can reduce differential identifiability, as additional gradients risk introducing nuisance signals such as motion back into the principal gradient. To further probe these effects, machine learning to predict fluid intelligence and age, and a motion prediction analysis, revealing that higher alignment gradient counts may leak information from lower gradients into the principal gradient for individual-level analyses. These findings highlight the trade-off between alignment precision and the potential reintroduction of noise.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 1
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177727
|b 2
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 5
|e Corresponding author
773 _ _ |a 10.1101/2024.11.26.625368
909 C O |o oai:juser.fz-juelich.de:1038546
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21