
 1 

MULTIMODAL PRECISION NEUROIMAGING OF THE INDIVIDUAL 

HUMAN BRAIN AT ULTRA-HIGH FIELDS 
 

Donna Gift Cabalo1,2, Ilana Ruth Leppert2, Risa Thevakumaran2, Jordan DeKraker1,2, Youngeun 

Hwang1,2, Jessica Royer1,2, Valeria Kebets1,2, Shahin Tavakol1,2, Yezhou Wang1,2, Yigu Zhou1,2, 

Oualid Benkarim1,2, Nicole Eichert3, Casey Paquola4, Christine Lucas Tardif2, David Rudko2, 

Jonathan Smallwood5, Raul Rodriguez-Cruces1,2*, Boris C. Bernhardt1,2* 

 
1Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada, 
2McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, 

Canada;  
3University of Oxford, Oxford, UK;  
4Forschungszentrum Julich, Julich, Germany;  
5Queens University, Kingston, ON, Canada. 

 

*Joint senior authors 

 

Correspondence to:  

Donna Gift Cabalo | Boris Bernhardt 

3801 Rue University, Montréal, QC, Canada, H3A 2B4 

donna.cabalo@mail.mcgill.ca | boris.bernhardt@mcgill.ca 

 

Measurement (s): Brain anatomy, Brain Activity, Diffusion, Brain microstructure, Functional 

connectivity, Structural Connectivity 

 

Technology Types (s): Ultra-high field MRI, 7 Tesla MRI, Magnetic resonance imaging (MRI), 

Diffusion Weighted Imaging, Functional Magnetic Resonance Imaging, Resting state functional 

connectivity, Task-based functional connectivity, Movie-based functional connectivity 

 

Sample Characteristic- Organism: Homo sapiens  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

mailto:donna.cabalo@mail.mcgill.ca
mailto:boris.bernhardt@mcgill.ca
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Multimodal neuroimaging allows for non-invasive examination of human brain structure and 

function across multiple scales. Precision neuroimaging builds upon this foundation, enabling the 

mapping of brain structure, function, and connectivity patterns with high fidelity in single 

individuals. Ultra-high field (UHF) neuroimaging, operating at magnetic field strengths of 7 Tesla 

or higher, increases signal-to-noise ratio and offers even higher spatial resolution. Here, we 

provide a multimodal Precision Neuroimaging and Connectomics (PNI) dataset, utilizing UHF 7T 

magnetic resonance imaging (MRI). Ten healthy individuals underwent a comprehensive MRI 

protocol, including T1 relaxometry, magnetization transfer imaging, T2*-weighted imaging, 

diffusion MRI, and multi-state functional MRI paradigms, aggregated across three imaging 

sessions. Alongside anonymized raw imaging data, we release cortex-wide connectomes from 

different modalities across multiple parcellation scales, and supply “gradients” that compactly 

characterize spatial patterning of cortical organization. Our precision imaging dataset will advance 

our understanding of structure-function relationships in the individual human brain and is publicly 

available via the Open Science Framework (https://osf.io/mhq3f/) and the Canadian Open 

Neuroscience Platform data portal (https://portal.conp.ca).  
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Background and Summary 
Neuroimaging has advanced our understanding of the human brain by allowing non-invasive and 

large-scale examination of structural and functional brain networks. 1,2 Nevertheless, most human 

MRI research collect limited individual-specific data in brief scanning sessions.3,4 Consequently, 

standard neuroimaging studies predominantly centered around group-averaged data that, while 

revealing fundamental principles of brain organization, limit the specificity and clinical utility of 

MRI.4-6 Precision neuroimaging, which prioritizes individualized mapping of brain structure and 

function through the use of repeated and prolonged scans,5,7 has emerged as a powerful approach 

to address this issue. By scanning each individual in long and often repeated sessions, precision 

neuroimaging provides sufficient signal and data quality to study individuals in their own “native” 

space.5,7 This personalized approach ensures reliable estimates and captures fine-grained 

organization of networks without the additional blurring of inter-individual variability.7 Moreover, 

averaging structural sequences across multiple scans enhances signal-to-noise ratio (SNR), 

facilitating the integration of structure and function to interrogate their relationship.  

 

Multimodal neuroimaging approaches hold promise in advancing the understanding of both 

healthy and diseased states by providing a comprehensive view of individual brains,8 thus 

improving specificity in MRI phenotyping. Multimodal structural imaging often capitalizes on 

diffusion MRI tractography to examine large-scale connectome architecture and are often 

complemented with measures of cortical thickness or geodesic distance.9 The ability of structural 

MRI to interrogate brain tissue can be augmented by using quantitative MRI sequences, providing 

richer biophysical characterization of inter-regional heterogeneity and inter-individual differences 

in the human brain. 10 11,12 13 Notably, T1 relaxation mapping distinguishes highly myelinated 

regions from less myelinated ones,10,13 facilitating the in vivo investigation of intracortical 

microstructure and its cognitive implications.11,12 Echoing post-mortem neuroanatomical studies, 

this method revealed smooth transitions in cortical laminar architecture, from sensory and motor 

cortices to paralimbic circuits.12,14 To characterize functional architectures, employing multi-state 

functional MRI (fMRI) allows investigation of how different brain networks interact and 

reconfigure under varying circumstances.15 For instance, dense temporal sampling of resting-state 

functional MRI (rs-fMRI) allows for detailed and reliable characterization of intrinsic functional 

networks and can help better understand the idiosyncrasy of heteromodal systems.6,16 
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Complementing task-free investigations with task-based fMRI can provide insights into brain 

responses to specific stimuli or cognitive tasks, providing detailed information on functional 

specialization.17 In this context, the use of movie watching paradigms18 have emerged as a valuable 

tool, allowing examination of synchronization of low-level brain activity and facilitating the 

identification of individual differences. Movies, closely resembling real life experiences, provide 

an ecologically valid alternative to both rs-fMRI, which may lack constraints, and task-fMRI, 

which emphasizes the activity of unique neural circuits.19 Additionally, movies help mitigate 

participant head motion while improving arousal and compliance.18,20 

 

Harnessing ultra-high filed (UHF) neuroimaging at magnetic field strengths of 7 Tesla or above 

can further enhance spatial resolution and sensitivity to blood oxygenation level dependent 

(BOLD) contrast.21-23 Moreover, multi-echo (ME) fMRI, a technique that addresses the 

indeterminacy problem of signal sources, offers improved signal fidelity and interpretability 

compared to single-echo fMRI.24 By acquiring multiple echo images per slice and modeling T2* 

decay at every voxel, ME-fMRI distinguishes brain activity from artifactual constituents.24,25  

Multiband (MB) acceleration enables simultaneous acquisition of ME-planar imaging slices, 

reducing imaging times.25,26 The increased specificity provided by multimodal, UHF-precision 

imaging therefore allows for more precise delineation of cortical network organization,27 

encompassing microstructure, connectivity, and function.26,28  

 

Recent advancements in neuroimaging and network neuroscience have facilitated the study of 

large-scale spatial trends in brain structure and function, commonly known as gradients.29-33 These 

gradients span various aspects of brain organization including structural34-36 and functional 

connectivity31,37-39, task-based investigations17,40 cortical morphology and microstructure,11,12,41,42 

indicating converging spatial trends.29,32 For example, analyses of intrinsic functional connectivity 

gradients have identified a principal gradient distinguishing sensorimotor systems from transmodal 

networks,31 consistent with established cortical hierarchy models.43 This gradient’s pattern also 

reflects geodesic distance measures between sensory and transmodal regions, suggesting a 

mechanism enabling transmodal networks to support higher cognitive functions independent of 

immediate sensory input.44,45 Further investigations using gradient-based approaches have 

revealed a progressive decoupling of principal functional and microstructural gradients,12 
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indicating the flexible functional roles of  transmodal networks.46 Gradient techniques, therefore, 

unify different principles of brain organization across multiple neurobiological features and scales.   

 

Neurosciences has increasingly benefitted from and embraced open science practices, particularly 

through data sharing initiatives and the dissemination of derivative data alongside the publication 

of processing pipelines. Large collaborative projects have produced open source datasets acquired 

at UHF 7T, such as the Human Connectome Project.22 However, these datasets focused either on 

in-depth sampling of functional scans22 or structural datasets, to mainly explore subcortical 

structures.21 To fill this gap, here we provide a multimodal Precision Neuroimaging and 

Connectomics (PNI) dataset, which capitalized on UHF 7T MRI acquisitions across multiple 

sessions. This dataset includes anonymized raw data that conforms with Brain Imaging Data 

structure47 (BIDS) standards and processed data derivatives using an open access pipeline48, which 

include inter-regional connectomes derived from multi-state fMRI, diffusion tractography, 

multiple quantitative imaging for microstructure covariance analysis and geodesic cortical 

distances that are constructed across multiple spatial and parcellation schemes. By providing a 

multimodal precision neuroimaging dataset, our initiative promises to become an invaluable and 

openly accessible resource for researchers aiming to advance our understanding of structure-

function relationships in the human brain. 

 

Methods 
Participants.  

The UHF imaging protocol was implemented at the McConnell Brain Imaging Centre of the 

Montreal Neurological Institute between March 2022 and November 2023. Ten healthy adults 

(4males/6females, age=26.6±4.60, left/right-handed=2/8) underwent three testing sessions 

(interval between sessions: mean±SD=95.45(74.71 days)). The MRI data acquisition protocols 

were approved by the Research Ethics Board of McGill University. All participants provided 

written informed consent, which included a provision for openly sharing all data in anonymized 

form. 

 

UHF-MRI data acquisition 
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MRI data were acquired on a 7T Terra Siemens with a 32-receive and 8-transmit channel head coil 

in parallel transmission (pTX) mode. Participants underwent 4 distinct structural and 5 distinct 

functional imaging protocols across three different sessions, with total scanning time of ~90 

minutes/session (Figure 1). Structural scans included: (i) three 3D-magnetization-prepared 2-rapid 

gradient-echo sequence with Universal Pulses to optimize B1+ uniformity49 (MP2RAGE; 0.5mm 

isovoxels, matrix=320×320, 320 sagittal slices, TR=5170ms, TE=2.44ms, TI1=1000ms, 

TI2=3200ms, flip=4°, iPAT=3, partial Fourier=6/8, FOV=260×260mm2), for studying cortical 

morphology and intracortical microstructural organization, (ii) two diffusion-weighted MRI with 

three distinct shells with b-values 0, 300, 700, and 2000s/mm2, with each shell acquired with 10, 

40, and 90 diffusion weighting directions, respectively, (1.1mm isovoxels, TR=7383ms, 

TE=70.60ms, flip angle=90°, refocusing flip angle=180°, FOV=211×211mm2, slice 

thickness=1.1mm, MB=2, echo spacing=0.79ms) for examining structural connectomes and fiber 

architectures, (iii) one myelin-sensitive magnetization transfer (MT; 0.7mm isovoxels, TR=95ms, 

TE=3.8ms, flip angle=5°, FOV=230×230 mm2 , slice thickness=0.72mm, 240 sagittal slices) and 

(iv) one iron-sensitive T2*-weighted multi-echo gradient-echo (ME-GRE) (0.7mm isovoxels, 

TR=43ms, TE=6.46-11.89-17.33-22.76-28.19-33.62ms, flip angle=13°, FOV=240×240 mm2, 

slice thickness=0.72mm, 160 sagittal slices). All multi-echo fMRI were acquired with a 2D BOLD 

echo-planar imaging sequence50 (University of Minnesota, CMRR; 1.9mm isovoxels, 75 slices 

oriented to AC-PC-39 degrees, TR=1690ms, TE=10.80/27.3/43.8ms, flip=67°, 

FOV=224×224mm2, slice thickness=1.9mm, MB=3, echo spacing=0.53ms). During the (v) three 

resting-state functional MRI, participants were instructed to fixate on a grey cross and not think of 

anything. Task-based fMRI were implemented based on a validated open-source protocol,17,51 and 

included the (vi/vii) one session of episodic encoding/retrieval and (viii) semantic tasks, each 

lasting approximately  six minutes. During the episodic memory encoding, participants memorized 

paired images of objects. In the retrieval phase, participants were shown an image and asked to 

identify the paired object from three options. Semantic memory retrieval involved identifying the 

object that is most conceptually related to a target image from three options. In both memory tasks, 

there were 48 trials and the difficulty was modulated based on semantic relatedness scores,52 

ensuring a balanced difficulty across trials (i.e., with 24 difficult and 24 easy trials). We also 

collected fMRI data while participants watched movies (ix), tracking hemodynamic activity during 
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naturalistic viewing conditions.18,53 A detailed imaging protocol is additionally provided in this 

data release, which includes the complete list of acquisition parameters.  

 
Fig.1 Precision NeuroImaging and Connectomics (PNI) dataset. Multimodal structural (A) and functional MRI 
(B) sequences acquired across multiple sessions and below are example neuroimaging features that can be derived 
from each modality. Cortical thickness and T1 map intensity features were generated from MP2RAGE-uni and T1 
map, respectively. ADC was from the DWI. For MT on/off, the intensity feature was derived from magnetization 
transfer saturation (MTSAT). T2* map was first generated from fitting the T2*-weighted data, followed by intensity 
map. Abbreviations: MP2RAGE=3D-magnetization-prepared 2-rapid gradient-echo sequence, DWI=diffusion 
weighted imaging, MT=magnetization transfer, ADC=apparent diffusion coefficient, BOLD=blood oxygenation level 
dependent. 
 

UHF-MRI data preprocessing 

Raw DICOMS were sorted according to sequence and converted to Nifti format using dcm2niix54 

(https://github.com/rordenlab/dcm2niix). Subject and session-specific directories were created 

according to BIDS convention55 (https://bids.neuroimaging.io) and validated with the BIDS 

validator47 v1.13 (https://doi.org/10.5281/zenodo.3762221). All functional and structural data 

were preprocessed with micapipe48 v.0.2.3 (http://micapipe.readthedocs.io), an open-access 

preprocessing software. Structural MRI images were anonymized and defaced48.  

 

T1w processing  
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The MP2RAGE-derived uniform images (uni) were initially deobliqued and adjusted to LPI 

orientation (left to right, posterior to anterior, and inferior to superior). Subsequently, background 

denoising,56 bias-field correction and intensity normalization57 were applied. The skull-stripped 

image and subcortical structures were segmented using FSL FIRST.58 To improve image contrast, 

the image underwent additional non-local means filtering,57,59 followed by generation of cortical 

surface segmentations using FastSurfer60 v.2.0.0. Visual inspection and additional quality control 

quantifications and corrections ensured the accuracy of resulting surface outputs.  

 

Quantitative image processing  
Traditional quantitative maps require correction for bias introduced by RF transmit field (B1+) 

inhomogeneities,61,62 a process typically requiring fitting the B1+ mapping. To address this, we 

implemented a unified segmentation-based correction method62 (UNICORT; kernel=20mm full-

width-at-half-maximum, FHWM, normalization parameter='extremely light') to all the raw 

images. UNICORT employs a probabilistic framework that incorporates a physically informed 

generative model of smooth B1+ inhomogeneities and their multiplicative effect on quantitative 

maps, resulting in improve data quality and efficiency. The T2* maps were generated by fitting 

the T2*-weighted data and was bias-corrected. T2* maps were additionally denoised using an 

adaptive optimized non-local means63 (AONLM) filter (patch size=3×3×3voxels, search 

size=7×7×7voxels; beta=1.0). This filter operates on patches within the image to perform 

denoising, effectively removing spatially varying noise introduced by the GRAPPA technique. 

MT saturation61 (MTSAT), a semi-quantitative metric that represents the proportion of free water 

saturated by a single MT pulse within repetition time, was generated from bias-corrected MT 

images using qMRLab61 (https://qmrlab.readthedocs.io). Finally, subject and quantitative-image 

specific series of equivolumetric surfaces between pial and white matter boundaries were 

constructed, resulting in a unique intracortical intensity profile at each vertex. Each quantitative 

image was then aligned to native Fastsurfer space of each participant using label-based affine 

registration.64 No further processing was applied to the quantitative images.  

 

DWI processing  
Session-specific DWI data were concatenated and preprocessed in native DWI space with 

MRtrix.65 The processing included Marchenko-Pasteur66,67 (MP-PCA) denoising, correction for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://qmrlab.readthedocs.io/
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Gibbs ringing artifact,68,69 head motion, susceptibility distortion, eddy current-induced distortion 

and motion, as well as non-uniformity bias field correction.57,69-71 Subsequently, the b0 image was 

extracted and linearly registered to the main structural image (i.e., MP2RAGE-T1w). Finally, 

fractional anisotropy and mean diffusivity maps,72 considered as surrogates of fiber architecture 

and tissue microstructures, were computed by fitting a diffusion tensor model.73  

 

Multi-echo fMRI data processing 
Resting-, task- and movie-state fMRI were processed using a combination of FSL74 6.0, , AFNI75 

20.3.0 and ANTs76 2.3.4 software. Initially, each echo was reoriented to LPI, and motion corrected. 

Multi-echo scans underwent further processing with TEDANA77 v.0.0.12 ( 

https://zenodo.org/records/79262930), which extracts time series from all echos, optimally 

combines them, and decomposes the multi-echo BOLD data via principal and independent 

component analysis. TE-dependent components were classified as BOLD, and independent 

components discarded. Data then underwent high-pass filtering, followed by registration of 

volumetric time series to the native cortical surface. Additionally, native surface time series were 

registered to different surface templates (i.e., fsLR-32k, fsaverage5), followed by spatial 

smoothing using Gaussian diffusion kernel with a FWHM of 10 mm78 and correction for motion 

spikes using linear regression. Cerebellar and subcortical timeseries were also included in this 

release. 

Vertex-wise individual and group-level connectome matrices  

Inter-regional structural and functional connectomes derived from each imaging sequence are also 

included in this data release (Figure 2). All atlases, available on fsLR-32k symmetric surface 

template,79 were resampled to each subject’s native surface for modality-, subject-, and session-

specific matrix generation. Neocortical connectomes from 18 distinct parcellations including: (i) 

anatomical atlases from Desikan-Killiany80 (aparc), Destriex81 (aparc.a2009s), an in vivo 

approximation of cytoarchitectonic parcellation studies by Von Economo and Koskinas,82 and sub-

parcellations within Desikan-Killiany80 atlas (100-400 parcels); (ii) intrinsic functional 

connectivity based parcellations83 (Schaefer atlases based on 7-network parcellation) ranging from 

100-1000 nodes; and (iii) multimodal parcellation atlas84 from the Human Connectome Project 
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with 360 nodes (Glasser parcellation). Connectome matrices furthermore encompass data for 

hippocampus and subcortical structures including the nucleus accumbens, amygdala, caudate 

nucleus, pallidum, putamen, and thalamus.  

Geodesic distances (GD) between all cortical parcels on the subject’s native midsurface were 

computed using Dijkstra’s algorithm.85 The central vertex for each parcel, identified as the vertex 

with the shortest summed Euclidean distance to all other vertices within the parcel, was used as a 

reference point. The GD from the centroid vertex to all other vertices on the midsurface mesh was 

computed using workbench.86 Distances were averaged within each parcel. 

Microstructural profile co-variance (MPC) matrices were individually computed from each 

quantitative MRI contrast (e.g., MP2RAGE-derived T1map, MTSAT, T2*map). Initially, 

intracortical intensities were sampled by constructing 16 equivolumetric surfaces between pial and 

white matter boundaries.87 Boundary surfaces were discarded to account for partial volume effect. 

The resulting 14 profiles were used to compute MPC matrices, which captures the similarity in 

intracortical microstructure across cortical regions. Specifically, vertex-wise intensity profiles are 

averaged within parcels for each parcellation, and nodal profiles are cross-correlated across the 

cortex using partial correlation, while controlling for the average cortex-wide intensity profile. 

Notably, regions such as the left/right medial walls, corpus callosum, and pericallosal regions are 

excluded when averaging cortex-wide intensity profiles.  

Structural connectomes (SC) were generated using Mrtrix3 from preprocessed DWI data, with 

subcortical and cerebellar parcellations registered to native DWI space. Initially, a tractogram is 

generated using the iFOD2 algorithm and 3-tissue anatomically constrained tractography88,89 

(cortical and subcortical grey matter, white matter, cerebrospinal fluid), producing 40M 

streamlines (maximum tract length=400, minimum length=10, cutoff=0.06, step=0.5). 

Tractograms underwent spherical deconvolution informed filtering90 to reconstruct whole brain 

streamlines that are weighted by cross-sectional multipliers on DWI native space. Connection 

strengths between nodes were calculated based on the weighted streamline count and edge length 

matrices were subsequently generated.  
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Functional connectivity (FC) matrices were individually computed from each functional MRI 

scan. State-specific time series were mapped to individual surface models and registered to 

standard templates (e.g., fsLR-32k). Within cortical parcels, the native surface and fsLR-32k 

surface-mapped timeseries were averaged. Subcortical and cerebellar parcellations were warped 

to each participant’s native functional MRI volume space for nodal time series extraction. Finally, 

subject- and state-specific functional connectomes were generated by cross-correlating all nodal 

time series.  

Fig 2. Connectomes and Gradients. Vertex-wise connectomes sorted according to the Yeo-7-network parcellations91 
and principal gradients derived from different modalities included in the release. Abbreviations: GD=geodesic 
distance, MPC=microstructural profile covariance, SC=structural connectome, MTSAT=magnetization transfer 
saturation, rs=resting state, FC=functional connectome, G1=Gradient 1.  

Data Records 

All files are organized and conform with BIDS55 and are available on the Canadian Open 

Neuroscience Platform portal (CONP; https://portal.conp.ca) and also via the Open Science 

Framework (OSF; https://osf.io/mhq3f/). The raw data for each participant totals ~14 GB, while 

subject-specific derivatives are ~ 46 GB.  

Raw data 

All data in native space and .json sidecars are located in /rawdata/sub-PNC#/ses-# branch of the 

BIDS directory structure. Each subject underwent three-sessions of MP2RAGE sequence imaging 

and rs-fMRI (/ses-01, /ses-02, /ses-03), two-sessions of DWI (/ses-01, /ses-02), single session of 
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multitask-based (/ses-01 or /ses-02) and movie-fMRI, as well as MT- and T2*-weighted  imaging 

(/ses-03; Figure 4).  

For each subject and session (/sub-PNC#/ses-#), all defaced structural files are located in the /anat 

directory: MP2RAGE-derived T1w images (denoted as uni), inversion time parameters (inv-1, inv-

2) and T1 relaxometry (T1map). The DWI files are contained in /rawdata/sub-PNC#/ses-#/dwi 

subdirectory which included: diffusion gradient and direction (bval, bvec), DWI volumes and .json 

files associated with each shell (sub-PNC#_ses-#_acq-b#_dir-AP_dwi.json).  

The /sub-PNC#/ses-#/fmap subdirectory contains b0 images in inverse phase encoding direction 

(i.e., sub-PNC#_ses-0#_acq-fmri_dir-AP_epi.nii.gz) and phase encoding direction of spin-echo 

images (i.e., sub-PNC#_ses-#_acq-fmri_dir-PA_epi.json, sub-PNC#_ses-#_acq-fmri_dir-

PA_epi.json) 

Subject and session-specific multi-echo fMRI scans and corresponding tsv event files for tasks are 

located in /rawdata/sub-PNC#/ses-#/func subdirectory. Functional timeseries for all rs-fMRI 

include 210 time points (i.e., sub-PNC#_ses-#_task-rest_echo-#_bold.nii.gz), episodic encoding 

task with 200 timepoints (i.e., sub-PNC#_ses-#_task-epiencode_echo-#_bold.nii.gz), episodic 

retrieval with 205 timepoints (i.e., sub-PNC#_ses-#_task-epiretrieve_echo-#_bold.nii.gz), 

semantic retrieval blocks 1 and 2 (i.e., sub-PNC#_ses-#_task-semantic#_echo-#_bold.nii.gz), each 

with 125 timepoints, two affective and two documentary style movies, each with 105 time points 

(i.e., sub-PNC#_ses-#_task-movies#_echo-#_bold.nii.gz).  

Processed data 

Processed data are located in the /derivatives subdirectory. Quality control reports for raw 

structural and the optimally combined echo of functional data are provided in the 

/derivatives/mriqc/ directory. Image modality-specific matrices with node counts ranging from 70 

to 1000 were generated using micapipe48, and are stored within their respective subdirectories (e.g.,  

structural connectomes can be found in /derivatives/micapipe_v0.2.0/sub-PNC#/ses-
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#/dwi/connectomes, whereas functional connectomes can be found at /derivatives/ 

micapipe_v0.2.0/sub-PNC#/ses-#/func/desc-me_task-#_bold connectomes/surf).  

Structural data  

Processing derivatives of structural scans are provided in /derivatives/micapipe_v0.2.0/sub-

PNC#/ses-#/anat, which include the main structural scan (i.e., sub-PNC#_ses-#_space-

nativepro_T1w_nlm.nii.gz, nlm is added to the string name to denote the non-local means filtering 

applied to the data). Furthermore, /derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/dist contains the 

GD matrices for each cortical parcellation/surface (i.e., sub-PNC#_ses-#_atlas-schaefer-

1000_GD.shape.gii) which was computed along each participants’s native midsurface using 

workbench command. Finally, the MPC matrices and intensity profiles generated from each 

quantitative image are stored in /derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/mpc (i.e., acq-

T1map, acq-MTSAT) and identified by parcellation scheme from which they were computed (i.e., 

sub-PNC#_ses-#_atlas- schaefer -400_desc-intensity_profiles.shape.gii, sub-PNC#_ses-#_atlas- 

schaefer -400_desc-MPC.shape.gii).  

DWI data  

Processing derivatives of DWI scans are provided in /derivatives/micapipe_v0.2.0/sub-PNC#/ses-

#/dwi and organized into two distinct subdirectories. First, the structural connectomes and 

associated edge lengths are provided for each parcellation (i.e., /dwi/connectomes/sub-PNC#_ses-

#_space dwi_atlas-schaefer-600_desc-iFOD2-40M-SIFT2_full-connectome.shape.gii). Eddy 

outputs estimated and used for correcting eddy currents and movements are in 

/derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/dwi/eddy. 

Multi-echo fMRI data  

Functional MRI-specific (i.e., desc-me_task-rest_bold, desc-me_task-epiretrieve_bold) are 

provided in /derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/func. Each fMRI subdirectory is 

organized into two distinct subdirectories: (1) /func/surf which include all the fully processed 
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connectomes that are computed from native-surface mapped timeseries as well as the temporal 

signal to noise ratio (tSNR) maps. (2) /func/volumetric/ which mainly include the fully processed 

data in volumetric space (i.e., sub-PNC#_ses-#_space-func_desc-me_preproc.nii.gz).  

Quality Control 

Image quality matrices (IQM) computed by MRIQC v23.1.0 (https://github.com/nipreps/mriqc) 

are also provided in /mriqc branch of MICA-PNC processing derivatives. Individual and session-

specific IQM reports for structural scans (/mriqc/sub-PNC#/ses-#/anat) and functional scans 

(/mriqc/sub-PNC#/ses-#/func) are provided in both .html and .json formats. These reports 

evaluates the quality of the input data such as contrast-to-noise ratio estimates and motion.92  

Technical Validation and Processing Derivative Metrics 

Cortical surface segmentations  

All surface extractions were visually inspected by two raters (DGC, YW) and corrected for any 

segmentation errors with manual correction.  

MRI image quality metrics 

 
The MP2RAGE-uni, MT on/off and T2*-weighted image quality were evaluated using contrast-

to-noise (CNR)93 derived with MRIQC.92 This metric relates to the separability between grey and 

white matter distributions in each image across all sessions (Figure 3A). For DWI images, total 

movement in each volume was quantified in each shell using MRtrix and FSLeddy,70 by 

calculating the displacement of each voxel and then averaging the squares (RMS) of those 

displacements across all intracerebral voxels (Figure 3B). For each of the five functional scans, 

framewise displacement (FD) for the optimally combined echo was estimated using the FSL 

motion outlier detection tool. The temporal SNR (tSNR) for each subject and functional scan was 

computed by dividing the mean timeseries by the standard deviation. This was performed on the 

minimally processed timeseries to generate tSNR maps across the cortex for each subject. These 
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native cortical surface timeseries were then coregistered to fsLR-32k surface templates and 

averaged across subjects and sessions (Figure 3C). 

Figure 3. Technical validation metrics. (A) Image quality was evaluated with contrast-to-noise (CNR) estimated 
with the MRIQC pipeline. No outliers were detected in MP2RAGE-uni scans across all sessions (upper panel), MT 
on/off (middle), and T2* (lower). (B) Motion parameters of diffusion-weighted images obtained from FSL eddy. Line 
plots illustrate root mean squared (RMS) voxel-wise displacement relative to the first volume across all shells. (C, 
upper panel) Framewise displacement (FD) of optimally combined echo for each functional scans obtained using 
FSL motion outliers, representing the average rotation and translation parameter differences at each volume. (C, 
lower). Vertex-wise temporal signal-to-noise (tSNR) computed on the native surface of each participant. Computed 
tSNR values were averaged within a fsLR-5k-node functional atlas and across individuals. 

Surface-based neuroimaging features  

Preprocessed data for each modality includes various surface-based neuroimaging features 

(Figure 1). Morphological features such as cortical thickness and curvature, as well as diffusion 

MRI derived FA and ADC are in /derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/maps. Tissue 

contrast maps are also available (e.g., /derivatives/micapipe_v0.2.0/sub-PNC#/ses-#/mpc/sub-

PNC#_ses-01_atlas-schaefer-400_desc-intensity_profiles.shape.gii). Functional connectivity 

matrices are available for each of the functional scans. Additionally, we performed surface-based 

first level analysis to illustrate general linear model (GLM) fitting to task-based data sampled on 

the cortical surface. All features are available in both native and standard surface templates (e.g., 

fsLR-32k, fsaverage5).  

Cortical gradient estimation from vertex-wise connectomes  

Individual and group-level connectivity gradients were derived from each data modality using 

Brainspace v0.1.3 (https://brainspace.readthedocs.io/).33 Group-level gradients were generated 
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using averaged subject-level matrices in Conte69 surface space (Figure 2). GD, MPCs and FC 

matrices were thresholded to retain only the top 10% row-wise connections. To reduce variance in 

connectivity strength, SC matrices were initially log-transformed before averaging. To mitigate 

limitations in mapping inter-hemispheric fibers with diffusion tractography, SC gradients were 

computed separately for each hemisphere and subsequently aligned the right to the left 

hemispheres. GD and corresponding gradients were also computed separately for each hemisphere. 

We constructed affinity matrices using the normalized angle to measure the similarity of inter-

regional patterns between regions. Affinity matrices from each modality were fed into diffusion 

map embedding,31,33,94 a non-linear dimensionality reduction technique to identify low-

dimensional eigenvectors. To evaluate reproducibility, individual and modality-specific gradients 

were also generated and aligned to their respective group-level templates using Procrustes 

rotations. Finally, we computed the averaged correlations between individual and group level 

gradients. The three group and individual-level gradients that explained most of the variance are 

provided in /derivatives/gradients.  

As expected, the principal GD gradient (GD-G1) recapitulated the longest cortical distance axis in 

anterior to posterior direction1. SC-G1 distinguished visual and sensorimotor surfaces, whereas 

rsFC-G1 describe a unimodal to transmodal pattern.31 MPC-G1 derived from T1, MTSAT and T2* 

maps were anchored in primary sensory areas and limbic regions. 12,14,41 G1-GD (multi-session 

mean r and SD=0.99 ± 0.001; single session=0.99 ± 0.001), MPC-T1 (0.85±0.022; 0.79±0.04), and 

FC (0.86±0.04; 0.76±0.06) were highly replicable in all participants and moderately replicable for 

G1 SC (0.73±0.068; 0.66±0.13) and MPC-MTSAT (0.56±0.140) and MPC-T2* (0.40±0.423). 

Identifiability and Reliability 

Our multi-session data allows to assess the test-retest reliability. For illustration, we examined the 

default mode network (DMN) connectivity from rs-fMRI connectomes and MPC profiles from 

MP2RAGE-derived T1 maps across three scanning sessions for each of the 10 participants (Figure 

4 middle). We evaluated the reliability using a statistical framework95 that considers both intra- 

and inter-subject reliability. Intra- and inter-subject reliability were assessed by averaging the 

correlations between measurements obtained at each session and across participants, respectively. 
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Ideally, individual MRI features should exhibit high reliability indicating consistency and lower 

population reliability preserving individual differences. Additionally, we evaluated the uniqueness 

of individual features using an established identifiability framework,95-97 measuring the effect size 

of differences between intra- and inter-individual reliabilities. Our analysis showed that for both 

features, the intra-subject (DMN=0.84, MPC=0.85) was higher than inter-subject reliability 

(DMN=0.76, MPC=0.65), with strong identifiability (DMN=1.02, MPC=1.08), indicating reliable 

and distinct DMN and MPC patterns from our UHF data while preserving individual differences 

(Figure 4 bottom). 

Fig. 4 PNI MRI acquisition. Multimodal structural and functional MRI acquired across three sessions (top panel). 
Subject-specific MPC profiles derived from MP2RAGE-T1 maps and DMN derived from resting state connectome 
(middle panel). Test-retest reliability and identifiability for MPC-T1maps and DMN. Abbreviations: DWI=diffusion 
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weighted imaging, MT=magnetization transfer on/off, rs-fMRI=resting state functional MRI, Sj=subjects, 
MPC=microstructural profile covariance, DMN= Default mode network.  

Usage Notes 
Data hosting 

MICA-PNI is openly available via the CONP portal (https://portal.conp.ca) and OSF 

(https://osf.io/mhq3f/).  

Code Availability 

The processing pipeline scripts, including usage instructions and processing steps are openly 

available in GitHub (https://github.com/MICA-MNI/micapipe) and ReadTheDocs 

(https://micapipe.readthedocs.io/). Gradients were generated using Brainspace v0.1.3 

(https://brainspace.readthedocs.io/).  

 

Acknowledgements 

The authors thank all participants who took part in this multi-session study. We also thank David 

Costa, Ronald Lopez, Soheil Quchani, and Michael Ferreira for their assistance in data collection. 

DGC received support from the Fonds de la Recherche du Québec – Santé (FRQ-S), Quebec 

BioImaging Network (QBIN), Savoy Foundation and Canada First Research Excellence Fund, 

awarded to McGill University for the Healthy Brains for Healthy Lives (HBHL) initiative. JR 

received support from the Canadian Open Neuroscience Platform (CONP) and Canadian Institute 

of Health Research (CIHR). CP and RRC received support from the FRQ-S. JD is supported by 

Natural Sciences and Engineering Research Council- Post-Doctoral Fellowship (NSERC-PDF). 

NE is supported by Sir Henry Wellcome Postdoctoral Fellowship from the Wellcome Trust 

[222799/Z/21/Z]. ST received a Faculty of Medicine studentship from McGill University. OB 

received support from the HBHL program. BCB acknowledges support from CIHR (FDN-154298, 

PJT-174995, PJT-191853), SickKids Foundation (NI17-039), NSERC (Discovery-1304413) 

BrainCanada, the Helmholtz International BigBrain Analytics and Learning Laboratory 

(HIBALL), HBHL, and the Canada Research Chairs Program. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://osf.io/mhq3f/
https://github.com/MICA-MNI/micapipe
https://micapipe.readthedocs.io/
https://brainspace.readthedocs.io/
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Author contributions 
Conception, design, manuscript preparation: DGC, BCB, IRL, JS, RRC; Participant recruitment: 

DGC; Data acquisition: DGC, IRL, ST, Processing pipeline: RRC, YH; Data processing: DGC, 

VK; Quality control: DGC, YW. All authors provided feedback and approved the final manuscript.  

 

Competing interests 
The authors declare no competing interests. 

 

References 
1 Royer, J. et al. An open MRI dataset for multiscale neuroscience. Scientific Data 9, 569 

(2022).  
2 Lariviere, S. et al. Microstructure-informed connectomics: enriching large-scale 

descriptions of healthy and diseased brains. Brain connectivity 9, 113-127 (2019).  
3 Van Dijk, K. R. et al. Intrinsic functional connectivity as a tool for human connectomics: 

theory, properties, and optimization. Journal of neurophysiology 103, 297-321 (2010).  
4 Anderson, J. S., Ferguson, M. A., Lopez-Larson, M. & Yurgelun-Todd, D. Reproducibility 

of single-subject functional connectivity measurements. American journal of 
neuroradiology 32, 548-555 (2011).  

5 Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 
791-807. e797 (2017).  

6 Laumann, T. O. et al. Functional system and areal organization of a highly sampled 
individual human brain. Neuron 87, 657-670 (2015).  

7 Poldrack, R. A. Precision neuroscience: Dense sampling of individual brains. Neuron 95, 
727-729 (2017).  

8 Grothe, M. J., Bokde, A. L. & Teipel, S. J. in MRI in Psychiatry     371-422 (Springer, 
2014). 

9 Schüz, A. & Braitenberg, V. in Cortical Areas     389-398 (CRC Press, 2002). 
10 Sereno, M. I., Lutti, A., Weiskopf, N. & Dick, F. Mapping the human cortical surface by 

combining quantitative T 1 with retinotopy. Cerebral cortex 23, 2261-2268 (2013).  
11 Royer, J. et al. Myeloarchitecture gradients in the human insula: Histological 

underpinnings and association to intrinsic functional connectivity. Neuroimage 216, 
116859 (2020).  

12 Paquola, C. et al. Microstructural and functional gradients are increasingly dissociated in 
transmodal cortices. PLoS biology 17, e3000284 (2019).  

13 Stüber, C. et al. Myelin and iron concentration in the human brain: a quantitative study of 
MRI contrast. Neuroimage 93, 95-106 (2014).  

14 Mesulam, M. M. From sensation to cognition. Brain 121 ( Pt 6), 1013-1052 (1998). 
https://doi.org:10.1093/brain/121.6.1013 

15 Gratton, C. et al. Functional brain networks are dominated by stable group and individual 
factors, not cognitive or daily variation. Neuron 98, 439-452. e435 (2018).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org:10.1093/brain/121.6.1013
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

16 Braga, R. M., Van Dijk, K. R., Polimeni, J. R., Eldaief, M. C. & Buckner, R. L. Parallel 
distributed networks resolved at high resolution reveal close juxtaposition of distinct 
regions. bioRxiv, 475806 (2018).  

17 Cabalo, D. G. et al. Differential reorganization of episodic and semantic memory systems 
in epilepsy-related mesiotemporal pathology. bioRxiv, 2023.2009. 2028.560002 (2023).  

18 Vanderwal, T. et al. Individual differences in functional connectivity during naturalistic 
viewing conditions. Neuroimage 157, 521-530 (2017).  

19 Finn, E. & Bandettini, P.     (2021). 
20 Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C. & Castellanos, F. X. Inscapes: A movie 

paradigm to improve compliance in functional magnetic resonance imaging. Neuroimage 
122, 222-232 (2015).  

21 Forstmann, B. U. et al. Multi-modal ultra-high resolution structural 7-Tesla MRI data 
repository. Scientific data 1, 1-8 (2014).  

22 Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective. 
Neuroimage 62, 2222-2231 (2012).  

23 Viessmann, O. & Polimeni, J. R. High-resolution fMRI at 7 Tesla: challenges, promises 
and recent developments for individual-focused fMRI studies. Current opinion in 
behavioral sciences 40, 96-104 (2021).  

24 Olafsson, V., Kundu, P., Wong, E. C., Bandettini, P. A. & Liu, T. T. Enhanced identification 
of BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and 
multi-echo ICA. Neuroimage 112, 43-51 (2015).  

25 Kundu, P. et al. Multi-echo fMRI: a review of applications in fMRI denoising and analysis 
of BOLD signals. Neuroimage 154, 59-80 (2017).  

26 Boyacioğlu, R., Schulz, J., Koopmans, P. J., Barth, M. & Norris, D. G. Improved sensitivity 
and specificity for resting state and task fMRI with multiband multi-echo EPI compared to 
multi-echo EPI at 7 T. Neuroimage 119, 352-361 (2015).  

27 Vu, A. T. et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human 
Connectome Project. Neuroimage 154, 23-32 (2017).  

28 Betts, M. J., Acosta-Cabronero, J., Cardenas-Blanco, A., Nestor, P. J. & Düzel, E. High-
resolution characterisation of the aging brain using simultaneous quantitative susceptibility 
mapping (QSM) and R2* measurements at 7 T. Neuroimage 138, 43-63 (2016).  

29 Bernhardt, B. C., Smallwood, J., Keilholz, S. & Margulies, D. S.  Vol. 251   118987 
(Elsevier, 2022). 

30 Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical 
organization. Trends in cognitive sciences 22, 21-31 (2018).  

31 Margulies, D. S. et al. Situating the default-mode network along a principal gradient of 
macroscale cortical organization. Proceedings of the National Academy of Sciences 113, 
12574-12579 (2016).  

32 Royer, J. et al. Gradients of brain organization: Smooth sailing from methods development 
to user community. Neuroinformatics, 1-12 (2024).  

33 Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in 
neuroimaging and connectomics datasets. Commun Biol 3, 103 (2020). 
https://doi.org:10.1038/s42003-020-0794-7 

34 Park, B.-y. et al. Signal diffusion along connectome gradients and inter-hub routing 
differentially contribute to dynamic human brain function. Neuroimage 224, 117429 
(2021).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org:10.1038/s42003-020-0794-7
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

35 Bajada, C. J. et al. A graded tractographic parcellation of the temporal lobe. NeuroImage 
155, 503-512 (2017).  

36 Vos de Wael, R. et al. Structural connectivity gradients of the temporal lobe serve as 
multiscale axes of brain organization and cortical evolution. Cerebral cortex 31, 5151-5164 
(2021).  

37 Oligschläger, S. et al. Gradients of connectivity distance are anchored in primary cortex. 
Brain Structure and Function 222, 2173-2182 (2017).  

38 Guell, X., Schmahmann, J. D., Gabrieli, J. D. & Ghosh, S. S. Functional gradients of the 
cerebellum. elife 7, e36652 (2018).  

39 Vos de Wael, R. et al. Anatomical and microstructural determinants of hippocampal 
subfield functional connectome embedding. Proc Natl Acad Sci U S A 115, 10154-10159 
(2018). https://doi.org:10.1073/pnas.1803667115 

40 Caciagli, L. et al. Disorganization of language and working memory systems in frontal 
versus temporal lobe epilepsy. Brain 146, 935-953 (2023).  

41 Royer, J. et al. Cortical microstructural gradients capture memory network reorganization 
in temporal lobe epilepsy. Brain (2023). https://doi.org:10.1093/brain/awad125 

42 Wagstyl, K., Ronan, L., Goodyer, I. M. & Fletcher, P. C. Cortical thickness gradients in 
structural hierarchies. Neuroimage 111, 241-250 (2015).  

43 Mesulam, M.-M. From sensation to cognition. Brain: a journal of neurology 121, 1013-
1052 (1998).  

44 Smallwood, J. et al. The default mode network in cognition: a topographical perspective. 
Nature reviews neuroscience 22, 503-513 (2021).  

45 Smallwood, J. et al. Escaping the here and now: evidence for a role of the default mode 
network in perceptually decoupled thought. Neuroimage 69, 120-125 (2013).  

46 Valk, S. L. et al. Genetic and phylogenetic uncoupling of structure and function in human 
transmodal cortex. Nature Communications 13, 2341 (2022).  

47 Blair R, M. Z., Gorgolewski KJ, Hardcastle N, Hobson-Lowther T, Nishikawa D. bids-
validator, 2021). 

48 Cruces, R. R. et al. Micapipe: A pipeline for multimodal neuroimaging and connectome 
analysis. Neuroimage 263, 119612 (2022). 
https://doi.org:10.1016/j.neuroimage.2022.119612 

49 Van Damme, L., Mauconduit, F., Chambrion, T., Boulant, N. & Gras, V. Universal 
nonselective excitation and refocusing pulses with improved robustness to off‐resonance 
for Magnetic Resonance Imaging at 7 Tesla with parallel transmission. Magnetic 
Resonance in Medicine 85, 678-693 (2021).  

50 Uğurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRI 
in the Human Connectome Project. Neuroimage 80, 80-104 (2013).  

51 Tavakol, S. et al. DIFFERENTIAL MEMORY IMPAIRMENT ACROSS RELATIONAL 
DOMAINS IN TEMPORAL LOBE EPILEPSY. bioRxiv, 2022.2011. 2001.514752 (2022).  

52 Han, L., Kashyap, A. L., Finin, T. W., Mayfield, J. & Weese, J. in International Workshop 
on Semantic Evaluation. 

53 Konu, D. et al. Exploring patterns of ongoing thought under naturalistic and conventional 
task-based conditions. Consciousness and cognition 93, 103139 (2021).  

54 Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging 
data analysis: DICOM to NIfTI conversion. Journal of neuroscience methods 264, 47-56 
(2016).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org:10.1073/pnas.1803667115
https://doi.org:10.1093/brain/awad125
https://doi.org:10.1016/j.neuroimage.2022.119612
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

55 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and 
describing outputs of neuroimaging experiments. Scientific data 3, 1-9 (2016).  

56 Marques, J. P. et al. MP2RAGE, a self bias-field corrected sequence for improved 
segmentation and T1-mapping at high field. Neuroimage 49, 1271-1281 (2010).  

57 Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE transactions on medical 
imaging 29, 1310-1320 (2010).  

58 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. 
Neuroimage 62, 782-790 (2012).  

59 Coupé, P. et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic 
resonance images. IEEE transactions on medical imaging 27, 425-441 (2008).  

60 Henschel, L. et al. Fastsurfer-a fast and accurate deep learning based neuroimaging 
pipeline. NeuroImage 219, 117012 (2020).  

61 Helms, G., Dathe, H., Kallenberg, K. & Dechent, P. High‐resolution maps of magnetization 
transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 
3D FLASH MRI. Magnetic Resonance in Medicine: An Official Journal of the 
International Society for Magnetic Resonance in Medicine 60, 1396-1407 (2008).  

62 Weiskopf, N. et al. Unified segmentation based correction of R1 brain maps for RF transmit 
field inhomogeneities (UNICORT). Neuroimage 54, 2116-2124 (2011).  

63 Manjón, J. V., Coupé, P., Martí‐Bonmatí, L., Collins, D. L. & Robles, M. Adaptive non‐
local means denoising of MR images with spatially varying noise levels. Journal of 
Magnetic Resonance Imaging 31, 192-203 (2010).  

64 Avants, B. B. et al. The optimal template effect in hippocampus studies of diseased 
populations. Neuroimage 49, 2457-2466 (2010).  

65 Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical 
image processing and visualisation. Neuroimage 202, 116137 (2019).  

66 Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A. N. & Hajnal, J. V. Complex 
diffusion-weighted image estimation via matrix recovery under general noise models. 
Neuroimage 200, 391-404 (2019).  

67 Veraart, J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 
394-406 (2016).  

68 Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs‐ringing artifact removal based 
on local subvoxel‐shifts. Magnetic resonance in medicine 76, 1574-1581 (2016).  

69 Andersson, J. L., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-
echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870-888 
(2003).  

70 Andersson, J. L. & Sotiropoulos, S. N. An integrated approach to correction for off-
resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063-
1078 (2016).  

71 Smith, S. M. et al. Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage 23, S208-S219 (2004).  

72 Veraart, J., Sijbers, J., Sunaert, S., Leemans, A. & Jeurissen, B. Weighted linear least 
squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. 
Neuroimage 81, 335-346 (2013). https://doi.org:10.1016/j.neuroimage.2013.05.028 

73 Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor 
from the NMR spin echo. J Magn Reson B 103, 247-254 (1994). 
https://doi.org:10.1006/jmrb.1994.1037 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org:10.1016/j.neuroimage.2013.05.028
https://doi.org:10.1006/jmrb.1994.1037
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

74 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. 
Neuroimage 62, 782-790 (2012). https://doi.org:10.1016/j.neuroimage.2011.09.015 

75 Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Comput Biomed Res 29, 162-173 (1996). 
https://doi.org:10.1006/cbmr.1996.0014 

76 Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in 
brain image registration. Neuroimage 54, 2033-2044 (2011). 
https://doi.org:10.1016/j.neuroimage.2010.09.025 

77 DuPre, E. et al. TE-dependent analysis of multi-echo fMRI with* tedana. Journal of Open 
Source Software 6, 3669 (2021).  

78 Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome 
Project. Neuroimage 80, 105-124 (2013).  

79 Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations 
and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. 
Cerebral cortex 22, 2241-2262 (2012).  

80 Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral 
cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968-980 (2006).  

81 Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical 
gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1-15 (2010).  

82 Scholtens, L. H., de Reus, M. A., de Lange, S. C., Schmidt, R. & van den Heuvel, M. P. An 
mri von economo–koskinas atlas. NeuroImage 170, 249-256 (2018).  

83 Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic 
functional connectivity MRI. Cerebral cortex 28, 3095-3114 (2018).  

84 Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171-
178 (2016).  

85 Dijkstra, E. W. in Edsger Wybe Dijkstra: His Life, Work, and Legacy     287-290 (2022). 
86 Marcus, D. S. et al. Informatics and data mining tools and strategies for the human 

connectome project. Frontiers in neuroinformatics 5, 4 (2011).  
87 Waehnert, M. et al. Anatomically motivated modeling of cortical laminae. Neuroimage 93, 

210-220 (2014).  
88 Tournier, J. D., Calamante, F. & Connelly, A. in Proceedings of the international society 

for magnetic resonance in medicine.   (John Wiley & Sons, Inc New Jersey, USA). 
89 Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Anatomically-constrained 

tractography: improved diffusion MRI streamlines tractography through effective use of 
anatomical information. Neuroimage 62, 1924-1938 (2012).  

90 Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. SIFT2: Enabling dense 
quantitative assessment of brain white matter connectivity using streamlines tractography. 
Neuroimage 119, 338-351 (2015).  

91 Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. Journal of neurophysiology (2011).  

92 Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI 
from unseen sites. PloS one 12, e0184661 (2017).  

93 Magnotta, V. A., Friedman, L. & BIRN, F. Measurement of signal-to-noise and contrast-
to-noise in the fBIRN multicenter imaging study. Journal of digital imaging 19, 140-147 
(2006).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org:10.1016/j.neuroimage.2011.09.015
https://doi.org:10.1006/cbmr.1996.0014
https://doi.org:10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

94 Coifman, R. R. & Lafon, S. Diffusion maps. Applied and computational harmonic analysis 
21, 5-30 (2006).  

95 Seguin, C., Smith, R. E. & Zalesky, A. Connectome spatial smoothing (CSS): Concepts, 
methods, and evaluation. Neuroimage 250, 118930 (2022).  

96 Amico, E. & Goñi, J. The quest for identifiability in human functional connectomes. 
Scientific reports 8, 8254 (2018).  

97 Tian, Y., Yeo, B. T., Cropley, V. & Zalesky, A. High-resolution connectomic fingerprints: 
Mapping neural identity and behavior. NeuroImage 229, 117695 (2021).  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2024. ; https://doi.org/10.1101/2024.06.17.596303doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.596303
http://creativecommons.org/licenses/by-nc-nd/4.0/

