001038551 001__ 1038551
001038551 005__ 20250131215342.0
001038551 0247_ $$2arXiv$$aarXiv:2410.13568
001038551 037__ $$aFZJ-2025-01534
001038551 088__ $$2arXiv$$aarXiv:2410.13568
001038551 1001_ $$0P:(DE-Juel1)207056$$aButt, Friederike$$b0$$ufzj
001038551 245__ $$aMeasurement-free, scalable and fault-tolerant universal quantum computing
001038551 260__ $$c2025
001038551 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738313688_12724
001038551 3367_ $$2ORCID$$aWORKING_PAPER
001038551 3367_ $$028$$2EndNote$$aElectronic Article
001038551 3367_ $$2DRIVER$$apreprint
001038551 3367_ $$2BibTeX$$aARTICLE
001038551 3367_ $$2DataCite$$aOutput Types/Working Paper
001038551 500__ $$a16 pages, 9 figures
001038551 520__ $$aReliable execution of large-scale quantum algorithms requires robust underlying operations and this challenge is addressed by quantum error correction (QEC). Most modern QEC protocols rely on measurements and feed-forward operations, which are experimentally demanding, and often slow and prone to high error rates. Additionally, no single error-correcting code intrinsically supports the full set of logical operations required for universal quantum computing, resulting in an increased operational overhead. In this work, we present a complete toolbox for fault-tolerant universal quantum computing without the need for measurements during algorithm execution by combining the strategies of code switching and concatenation. To this end, we develop new fault-tolerant, measurement-free protocols to transfer encoded information between 2D and 3D color codes, which offer complementary and in combination universal sets of robust logical gates. We identify experimentally realistic regimes where these protocols surpass state-of-the-art measurement-based approaches. Moreover, we extend the scheme to higher-distance codes by concatenating the 2D color code with itself and by integrating code switching for operations that lack a natively fault-tolerant implementation. Our measurement-free approach thereby provides a practical and scalable pathway for universal quantum computing on state-of-the-art quantum processors.
001038551 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038551 588__ $$aDataset connected to arXivarXiv
001038551 7001_ $$0P:(DE-Juel1)190763$$aLocher, David$$b1$$ufzj
001038551 7001_ $$0P:(DE-HGF)0$$aBrechtelsbauer, Katharina$$b2
001038551 7001_ $$0P:(DE-HGF)0$$aBüchler, Hans Peter$$b3
001038551 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b4$$eCorresponding author$$ufzj
001038551 909CO $$ooai:juser.fz-juelich.de:1038551$$pVDB
001038551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207056$$aForschungszentrum Jülich$$b0$$kFZJ
001038551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190763$$aForschungszentrum Jülich$$b1$$kFZJ
001038551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b4$$kFZJ
001038551 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038551 9141_ $$y2025
001038551 920__ $$lyes
001038551 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038551 980__ $$apreprint
001038551 980__ $$aVDB
001038551 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038551 980__ $$aUNRESTRICTED