001     1038554
005     20250203103342.0
024 7 _ |a 10.48550/ARXIV.2405.08694
|2 doi
037 _ _ |a FZJ-2025-01537
041 _ _ |a English
100 1 _ |a Danz, Sven
|0 P:(DE-Juel1)192152
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Calculating response functions of coupled oscillators using quantum phase estimation
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738315678_12725
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer. The functional form of these response functions can be mapped to a corresponding eigenproblem of a Hermitian matrix $H$, thus suggesting the use of quantum phase estimation. Our proposed quantum algorithm operates in the standard $s$-sparse, oracle-based query access model. For a network of $N$ oscillators with maximum norm $\lVert H \rVert_{\mathrm{max}}$, and when the eigenvalue tolerance $\varepsilon$ is much smaller than the minimum eigenvalue gap, we use $\mathcal{O}(\log(N s \lVert H \rVert_{\mathrm{max}}/\varepsilon)$ algorithmic qubits and obtain a rigorous worst-case query complexity upper bound $\mathcal{O}(s \lVert H \rVert_{\mathrm{max}}/(δ^2 \varepsilon) )$ up to logarithmic factors, where $δ$ denotes the desired precision on the coefficients appearing in the response functions. Crucially, our proposal does not suffer from the infamous state preparation bottleneck and can as such potentially achieve large quantum speedups compared to relevant classical methods. As a proof-of-principle of exponential quantum speedup, we show that a simple adaptation of our algorithm solves the random glued-trees problem in polynomial time. We discuss practical limitations as well as potential improvements for quantifying finite size, end-to-end complexities for application to relevant instances.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a ML4Q - Machine Learning for Quantum (101120240)
|0 G:(EU-Grant)101120240
|c 101120240
|f HORIZON-MSCA-2022-DN-01
|x 1
536 _ _ |a Verbundprojekt, Quantum Artificial Intelligence for the Automotive Industry (Q(AI)2) - Teilvorhaben: Implementierung, Benchmarking, und Management (13N15584)
|0 G:(BMBF)13N15584
|c 13N15584
|x 2
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Berta, Mario
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schröder, Stefan
|0 P:(DE-Juel1)176448
|b 2
|u fzj
700 1 _ |a Kienast, Pascal
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wilhelm-Mauch, Frank
|0 P:(DE-Juel1)184630
|b 4
|u fzj
700 1 _ |a Ciani, Alessandro
|0 P:(DE-Juel1)187048
|b 5
|u fzj
773 _ _ |a 10.48550/ARXIV.2405.08694
|y 2024
|t Quantum Physics
909 C O |o oai:juser.fz-juelich.de:1038554
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176448
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)187048
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21