001038557 001__ 1038557
001038557 005__ 20250131215342.0
001038557 0247_ $$2arXiv$$aarXiv:2407.08566
001038557 037__ $$aFZJ-2025-01540
001038557 088__ $$2arXiv$$aarXiv:2407.08566
001038557 1001_ $$0P:(DE-HGF)0$$ade la Fuente, Julio C. Magdalena$$b0
001038557 245__ $$aThe XYZ ruby code: Making a case for a three-colored graphical calculus for quantum error correction in spacetime
001038557 260__ $$c2025
001038557 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738315709_12723
001038557 3367_ $$2ORCID$$aWORKING_PAPER
001038557 3367_ $$028$$2EndNote$$aElectronic Article
001038557 3367_ $$2DRIVER$$apreprint
001038557 3367_ $$2BibTeX$$aARTICLE
001038557 3367_ $$2DataCite$$aOutput Types/Working Paper
001038557 500__ $$a59 pages, 26 figures
001038557 520__ $$aAnalyzing and developing new quantum error-correcting schemes is one of the most prominent tasks in quantum computing research. In such efforts, introducing time dynamics explicitly in both analysis and design of error-correcting protocols constitutes an important cornerstone. In this work, we present a graphical formalism based on tensor networks to capture the logical action and error-correcting capabilities of any Clifford circuit with Pauli measurements. We showcase the formalism on new Floquet codes derived from topological subsystem codes, which we call XYZ ruby codes. Based on the projective symmetries of the building blocks of the tensor network we develop a framework of Pauli flows. Pauli flows allow for a graphical understanding of all quantities entering an error correction analysis of a circuit, including different types of QEC experiments, such as memory and stability experiments. We lay out how to derive a well-defined decoding problem from the tensor network representation of a protocol and its Pauli flows alone, independent of any stabilizer code or fixed circuit. Importantly, this framework applies to all Clifford protocols and encompasses both measurement- and circuit-based approaches to fault tolerance. We apply our method to our new family of dynamical codes which are in the same topological phase as the 2+1d color code, making them a promising candidate for low-overhead logical gates. In contrast to its static counterpart, the dynamical protocol applies a Z3 automorphism to the logical Pauli group every three timesteps. We highlight some of its topological properties and comment on the anyon physics behind a planar layout. Lastly, we benchmark the performance of the XYZ ruby code on a torus by performing both memory and stability experiments and find competitive circuit-level noise thresholds of 0.18%, comparable with other Floquet codes and 2+1d color codes.
001038557 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038557 588__ $$aDataset connected to arXivarXiv
001038557 7001_ $$0P:(DE-Juel1)192118$$aOld, Josias$$b1$$ufzj
001038557 7001_ $$0P:(DE-HGF)0$$aTownsend-Teague, Alex$$b2
001038557 7001_ $$0P:(DE-Juel1)187504$$aRispler, Manuel$$b3$$ufzj
001038557 7001_ $$0P:(DE-HGF)0$$aEisert, Jens$$b4
001038557 7001_ $$0P:(DE-Juel1)204218$$aMüller, Markus$$b5$$eCorresponding author$$ufzj
001038557 909CO $$ooai:juser.fz-juelich.de:1038557$$pVDB
001038557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192118$$aForschungszentrum Jülich$$b1$$kFZJ
001038557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187504$$aForschungszentrum Jülich$$b3$$kFZJ
001038557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204218$$aForschungszentrum Jülich$$b5$$kFZJ
001038557 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038557 9141_ $$y2025
001038557 920__ $$lyes
001038557 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038557 980__ $$apreprint
001038557 980__ $$aVDB
001038557 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038557 980__ $$aUNRESTRICTED