001038563 001__ 1038563
001038563 005__ 20250131215342.0
001038563 0247_ $$2arXiv$$aarXiv:2406.02406
001038563 037__ $$aFZJ-2025-01546
001038563 088__ $$2arXiv$$aarXiv:2406.02406
001038563 1001_ $$0P:(DE-HGF)0$$aValentini, Marco$$b0
001038563 245__ $$aDemonstration of two-dimensional connectivity for a scalable error-corrected ion-trap quantum processor architecture
001038563 260__ $$c2025
001038563 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738315770_12726
001038563 3367_ $$2ORCID$$aWORKING_PAPER
001038563 3367_ $$028$$2EndNote$$aElectronic Article
001038563 3367_ $$2DRIVER$$apreprint
001038563 3367_ $$2BibTeX$$aARTICLE
001038563 3367_ $$2DataCite$$aOutput Types/Working Paper
001038563 500__ $$a23 pages, 19 figures (15 in main text, 4 in appendices)
001038563 520__ $$aA major hurdle for building a large-scale quantum computer is to scale up the number of qubits while maintaining connectivity between them. In trapped-ion devices, this connectivity can be provided by physically moving subregisters consisting of a few ions across the processor. The topology of the connectivity is given by the layout of the ion trap where one-dimensional and two-dimensional arrangements are possible. Here, we focus on an architecture based on a rectangular two-dimensional lattice, where each lattice site contains a subregister with a linear string of ions. We refer to this architecture as the Quantum Spring Array (QSA). Subregisters placed in neighboring lattice sites can be coupled by bringing the respective ion strings close to each other while avoiding merging them into a single trapping potential. Control of the separation of subregisters along one axis of the lattice, known as the axial direction, uses quasi-static voltages, while the second axis, the radial, requires control of radio frequency signals. In this work, we investigate key elements of the 2D lattice quantum computation architecture along both axes: We show that the coupling rate between neighboring lattice sites increases with the number of ions per site and the motion of the coupled system can be resilient to noise. The coherence of the coupling is assessed, and an entangled state of qubits in separate trapping regions along the radial axis is demonstrated. Moreover, we demonstrate control over radio frequency signals to adjust radial separation between strings, and thus tune their coupling rate. We further map the 2D lattice architecture to code primitives for fault-tolerant quantum error correction, providing a step towards a quantum processor architecture that is optimized for large-scale fault-tolerant operation.
001038563 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038563 588__ $$aDataset connected to arXivarXiv
001038563 7001_ $$0P:(DE-HGF)0$$avan Mourik, Martin W.$$b1
001038563 7001_ $$0P:(DE-Juel1)207056$$aButt, Friederike$$b2$$ufzj
001038563 7001_ $$0P:(DE-HGF)0$$aWahl, Jakob$$b3
001038563 7001_ $$0P:(DE-HGF)0$$aDietl, Matthias$$b4
001038563 7001_ $$0P:(DE-HGF)0$$aPfeifer, Michael$$b5
001038563 7001_ $$0P:(DE-HGF)0$$aAnmasser, Fabian$$b6
001038563 7001_ $$0P:(DE-HGF)0$$aColombe, Yves$$b7
001038563 7001_ $$0P:(DE-HGF)0$$aRössler, Clemens$$b8
001038563 7001_ $$0P:(DE-HGF)0$$aHolz, Philip$$b9
001038563 7001_ $$0P:(DE-HGF)0$$aBlatt, Rainer$$b10
001038563 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b11$$eCorresponding author$$ufzj
001038563 7001_ $$0P:(DE-HGF)0$$aMonz, Thomas$$b12
001038563 7001_ $$0P:(DE-HGF)0$$aSchindler, Philipp$$b13
001038563 909CO $$ooai:juser.fz-juelich.de:1038563$$pVDB
001038563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207056$$aForschungszentrum Jülich$$b2$$kFZJ
001038563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b11$$kFZJ
001038563 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038563 9141_ $$y2025
001038563 920__ $$lyes
001038563 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038563 980__ $$apreprint
001038563 980__ $$aVDB
001038563 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038563 980__ $$aUNRESTRICTED