001038565 001__ 1038565
001038565 005__ 20250131215342.0
001038565 0247_ $$2arXiv$$aarXiv:2403.19799
001038565 037__ $$aFZJ-2025-01548
001038565 088__ $$2arXiv$$aarXiv:2403.19799
001038565 1001_ $$0P:(DE-HGF)0$$aVarona, Santiago$$b0
001038565 245__ $$aLindblad-like quantum tomography for non-Markovian quantum dynamical maps
001038565 260__ $$c2025
001038565 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738315803_12722
001038565 3367_ $$2ORCID$$aWORKING_PAPER
001038565 3367_ $$028$$2EndNote$$aElectronic Article
001038565 3367_ $$2DRIVER$$apreprint
001038565 3367_ $$2BibTeX$$aARTICLE
001038565 3367_ $$2DataCite$$aOutput Types/Working Paper
001038565 520__ $$aWe introduce Lindblad-like quantum tomography (L$\ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors. This approach enables the estimation of time-local master equations, including their possible negative decay rates, by maximizing a likelihood function subject to dynamical constraints. We discuss L$\ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function, and how these need to be distributed in time depending on the noise characteristics. By a detailed comparative study employing both frequentist and Bayesian approaches, we assess the accuracy and precision of L$\ell$QT of a dephasing quantum dynamical map that goes beyond the Lindblad limit, focusing on two different microscopic noise models that can be realised in either trapped-ion or superconducting-circuit architectures. We explore the optimization of the distribution of measurement times to minimize the estimation errors, assessing the superiority of each learning scheme conditioned on the degree of non-Markovinity of the noise, and setting the stage for future experimental designs of non-Markovian quantum tomography.
001038565 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038565 588__ $$aDataset connected to arXivarXiv
001038565 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b1$$eCorresponding author$$ufzj
001038565 7001_ $$0P:(DE-HGF)0$$aBermudez, Alejandro$$b2
001038565 909CO $$ooai:juser.fz-juelich.de:1038565$$pVDB
001038565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b1$$kFZJ
001038565 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038565 9141_ $$y2025
001038565 920__ $$lyes
001038565 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038565 980__ $$apreprint
001038565 980__ $$aVDB
001038565 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038565 980__ $$aUNRESTRICTED