001     1038565
005     20250131215342.0
024 7 _ |a arXiv:2403.19799
|2 arXiv
037 _ _ |a FZJ-2025-01548
088 _ _ |a arXiv:2403.19799
|2 arXiv
100 1 _ |a Varona, Santiago
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lindblad-like quantum tomography for non-Markovian quantum dynamical maps
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738315803_12722
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a We introduce Lindblad-like quantum tomography (L$\ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors. This approach enables the estimation of time-local master equations, including their possible negative decay rates, by maximizing a likelihood function subject to dynamical constraints. We discuss L$\ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function, and how these need to be distributed in time depending on the noise characteristics. By a detailed comparative study employing both frequentist and Bayesian approaches, we assess the accuracy and precision of L$\ell$QT of a dephasing quantum dynamical map that goes beyond the Lindblad limit, focusing on two different microscopic noise models that can be realised in either trapped-ion or superconducting-circuit architectures. We explore the optimization of the distribution of measurement times to minimize the estimation errors, assessing the superiority of each learning scheme conditioned on the degree of non-Markovinity of the noise, and setting the stage for future experimental designs of non-Markovian quantum tomography.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Bermudez, Alejandro
|0 P:(DE-HGF)0
|b 2
909 C O |o oai:juser.fz-juelich.de:1038565
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21