Preprint FZJ-2025-01550

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning

 ;  ;  ;  ;  ;

2025

This record in other databases:

Report No.: arXiv:2402.17761

Abstract: The realization of large-scale quantum computers requires not only quantum error correction (QEC) but also fault-tolerant operations to handle errors that propagate into harmful errors. Recently, flag-based protocols have been introduced that use ancillary qubits to flag harmful errors. However, there is no clear recipe for finding a fault-tolerant quantum circuit with flag-based protocols, especially when we consider hardware constraints, such as qubit connectivity and available gate set. In this work, we propose and explore reinforcement learning (RL) to automatically discover compact and hardware-adapted fault-tolerant quantum circuits. We show that in the task of fault-tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than published results without and with hardware constraints of up to 15 physical qubits. Furthermore, RL allows for straightforward exploration of different qubit connectivities and the use of transfer learning to accelerate the discovery. More generally, our work opens the door towards the use of RL for the discovery of fault-tolerant quantum circuits for addressing tasks beyond state preparation, including magic state preparation, logical gate synthesis, or syndrome measurement.


Note: 34 pages, 20 figures

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)

Appears in the scientific report 2025
Click to display QR Code for this record

The record appears in these collections:
Document types > Reports > Preprints
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database

 Record created 2025-01-31, last modified 2025-01-31


External link:
Download fulltext
Fulltext by arXiv.org
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)