001038569 001__ 1038569
001038569 005__ 20250131215342.0
001038569 0247_ $$2arXiv$$aarXiv:2408.14251
001038569 037__ $$aFZJ-2025-01552
001038569 088__ $$2arXiv$$aarXiv:2408.14251
001038569 1001_ $$0P:(DE-Juel1)201742$$aBohnmann, Leon H.$$b0$$ufzj
001038569 245__ $$aBosonic Quantum Error Correction with Neutral Atoms in Optical Dipole Traps
001038569 260__ $$c2025
001038569 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738316191_12723
001038569 3367_ $$2ORCID$$aWORKING_PAPER
001038569 3367_ $$028$$2EndNote$$aElectronic Article
001038569 3367_ $$2DRIVER$$apreprint
001038569 3367_ $$2BibTeX$$aARTICLE
001038569 3367_ $$2DataCite$$aOutput Types/Working Paper
001038569 500__ $$a18 pages, 7 figures
001038569 520__ $$aBosonic quantum error correction codes encode logical qubits in the Hilbert space of one or multiple harmonic oscillators. A prominent class of bosonic codes are Gottesman-Kitaev-Preskill (GKP) codes of which implementations have been demonstrated with trapped ions and microwave cavities. In this work, we investigate theoretically the preparation and error correction of a GKP qubit in a vibrational mode of a neutral atom stored in an optical dipole trap. This platform has recently shown remarkable progress in simultaneously controlling the motional and electronic degrees of freedom of trapped atoms. The protocols we develop make use of motional states and, additionally, internal electronic states of the trapped atom to serve as an ancilla qubit. We compare optical tweezer arrays and optical lattices and find that the latter provide more flexible control over the confinement in the out-of-plane direction, which can be utilized to optimize the conditions for the implementation of GKP codes. Concretely, the different frequency scales that the harmonic oscillators in the axial and radial lattice directions exhibit and a small oscillator anharmonicity prove to be beneficial for robust encodings of GKP states. Finally, we underpin the experimental feasibility of the proposed protocols by numerically simulating the preparation of GKP qubits in optical lattices with realistic parameters.
001038569 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038569 588__ $$aDataset connected to arXivarXiv
001038569 7001_ $$0P:(DE-Juel1)190763$$aLocher, David F.$$b1$$ufzj
001038569 7001_ $$0P:(DE-HGF)0$$aZeiher, Johannes$$b2
001038569 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$eCorresponding author$$ufzj
001038569 909CO $$ooai:juser.fz-juelich.de:1038569$$pVDB
001038569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201742$$aForschungszentrum Jülich$$b0$$kFZJ
001038569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190763$$aForschungszentrum Jülich$$b1$$kFZJ
001038569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
001038569 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038569 9141_ $$y2025
001038569 920__ $$lyes
001038569 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038569 980__ $$apreprint
001038569 980__ $$aVDB
001038569 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038569 980__ $$aUNRESTRICTED