001     1038569
005     20250131215342.0
024 7 _ |a arXiv:2408.14251
|2 arXiv
037 _ _ |a FZJ-2025-01552
088 _ _ |a arXiv:2408.14251
|2 arXiv
100 1 _ |a Bohnmann, Leon H.
|0 P:(DE-Juel1)201742
|b 0
|u fzj
245 _ _ |a Bosonic Quantum Error Correction with Neutral Atoms in Optical Dipole Traps
260 _ _ |c 2025
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1738316191_12723
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 18 pages, 7 figures
520 _ _ |a Bosonic quantum error correction codes encode logical qubits in the Hilbert space of one or multiple harmonic oscillators. A prominent class of bosonic codes are Gottesman-Kitaev-Preskill (GKP) codes of which implementations have been demonstrated with trapped ions and microwave cavities. In this work, we investigate theoretically the preparation and error correction of a GKP qubit in a vibrational mode of a neutral atom stored in an optical dipole trap. This platform has recently shown remarkable progress in simultaneously controlling the motional and electronic degrees of freedom of trapped atoms. The protocols we develop make use of motional states and, additionally, internal electronic states of the trapped atom to serve as an ancilla qubit. We compare optical tweezer arrays and optical lattices and find that the latter provide more flexible control over the confinement in the out-of-plane direction, which can be utilized to optimize the conditions for the implementation of GKP codes. Concretely, the different frequency scales that the harmonic oscillators in the axial and radial lattice directions exhibit and a small oscillator anharmonicity prove to be beneficial for robust encodings of GKP states. Finally, we underpin the experimental feasibility of the proposed protocols by numerically simulating the preparation of GKP qubits in optical lattices with realistic parameters.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Locher, David F.
|0 P:(DE-Juel1)190763
|b 1
|u fzj
700 1 _ |a Zeiher, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 3
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1038569
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201742
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190763
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21