001038571 001__ 1038571
001038571 005__ 20250203103343.0
001038571 0247_ $$2doi$$a10.1103/PhysRevResearch.6.L042014
001038571 0247_ $$2arXiv$$aarXiv:2312.06664
001038571 037__ $$aFZJ-2025-01554
001038571 082__ $$a530
001038571 088__ $$2arXiv$$aarXiv:2312.06664
001038571 1001_ $$0P:(DE-HGF)0$$aColmenarez, Luis$$b0
001038571 245__ $$aAccurate optimal quantum error correction thresholds from coherent information
001038571 260__ $$aCollege Park, MD$$bAPS$$c2024
001038571 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738314734_12724
001038571 3367_ $$2ORCID$$aWORKING_PAPER
001038571 3367_ $$028$$2EndNote$$aElectronic Article
001038571 3367_ $$2DRIVER$$apreprint
001038571 3367_ $$2BibTeX$$aARTICLE
001038571 3367_ $$2DataCite$$aOutput Types/Working Paper
001038571 500__ $$a9 pages, 9 figures
001038571 520__ $$aQuantum error correcting (QEC) codes protect quantum information from decoherence, as long as error rates fall below critical error thresholds. In general, obtaining thresholds implies simulating the QEC procedure using, in general, sub-optimal decoding strategies. In a few cases and for sufficiently simple noise models, optimal decoding of QEC codes can be framed as a phase transition in disordered classical spin models. In both situations, accurate estimation of thresholds demands intensive computational resources. Here we use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds already from small-distance codes at moderate computational cost. We show the effectiveness and versatility of our method by applying it first to the topological surface and color code under bit-flip and depolarizing noise. We then extend the coherent information based methodology to phenomenological and quantum circuit level noise settings. For all examples considered we obtain highly accurate estimates of optimal error thresholds from small, low-distance instances of the codes, in close accordance with threshold values reported in the literature. Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes under realistic noise models.
001038571 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038571 588__ $$aDataset connected to arXivarXiv, CrossRef, Journals: juser.fz-juelich.de
001038571 7001_ $$0P:(DE-HGF)0$$aHuang, Ze-Min$$b1
001038571 7001_ $$0P:(DE-HGF)0$$aDiehl, Sebastian$$b2
001038571 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b3$$eCorresponding author$$ufzj
001038571 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.6.L042014$$gVol. 6, no. 4, p. L042014$$n4$$pL042014$$tPhysical review research$$v6$$x2643-1564$$y2024
001038571 909CO $$ooai:juser.fz-juelich.de:1038571$$pVDB
001038571 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b3$$kFZJ
001038571 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038571 9141_ $$y2024
001038571 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-07T08:08:02Z
001038571 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-07T08:08:02Z
001038571 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-07T08:08:02Z
001038571 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-02-07T08:08:02Z
001038571 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001038571 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001038571 920__ $$lyes
001038571 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001038571 980__ $$apreprint
001038571 980__ $$aVDB
001038571 980__ $$aI:(DE-Juel1)PGI-2-20110106
001038571 980__ $$aUNRESTRICTED