001038602 001__ 1038602
001038602 005__ 20250203103345.0
001038602 0247_ $$2doi$$a10.48550/ARXIV.2302.14707
001038602 037__ $$aFZJ-2025-01574
001038602 041__ $$aEnglish
001038602 1001_ $$0P:(DE-Juel1)188535$$aSimm, Alexander$$b0$$eCorresponding author$$ufzj
001038602 245__ $$aTwo qubits in one transmon -- QEC without ancilla hardware
001038602 260__ $$barXiv$$c2023
001038602 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738318993_12724
001038602 3367_ $$2ORCID$$aWORKING_PAPER
001038602 3367_ $$028$$2EndNote$$aElectronic Article
001038602 3367_ $$2DRIVER$$apreprint
001038602 3367_ $$2BibTeX$$aARTICLE
001038602 3367_ $$2DataCite$$aOutput Types/Working Paper
001038602 520__ $$aWe show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon. This is done by identifying energy levels as product states between multiple effecitve qubits. As a proof of concept we realise a complete set of gates necessary for universal computing by numerically optimising control pulses for single qubit gates on each of the qubits, entangling gates between the two qubits in one transmon, and an entangling gate between two qubits from two coupled transmons. The optimisation considers parameters which could make it possible to validate this experimentally. With these control pulses it is in principle possible to double the number of available qubits without any overhead in hardware. The additional qubits could be used in algorithms which need many short-living qubits such as syndrom qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
001038602 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038602 536__ $$0G:(BMBF)13N15685$$aVerbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)$$c13N15685$$x1
001038602 588__ $$aDataset connected to DataCite
001038602 650_7 $$2Other$$aQuantum Physics (quant-ph)
001038602 650_7 $$2Other$$aFOS: Physical sciences
001038602 7001_ $$0P:(DE-Juel1)184984$$aMachnes, Shai$$b1$$ufzj
001038602 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b2$$ufzj
001038602 773__ $$a10.48550/ARXIV.2302.14707
001038602 909CO $$ooai:juser.fz-juelich.de:1038602$$pVDB
001038602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188535$$aForschungszentrum Jülich$$b0$$kFZJ
001038602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184984$$aForschungszentrum Jülich$$b1$$kFZJ
001038602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b2$$kFZJ
001038602 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038602 9141_ $$y2024
001038602 920__ $$lyes
001038602 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001038602 980__ $$apreprint
001038602 980__ $$aVDB
001038602 980__ $$aI:(DE-Juel1)PGI-12-20200716
001038602 980__ $$aUNRESTRICTED