001038615 001__ 1038615
001038615 005__ 20250203103346.0
001038615 0247_ $$2doi$$a10.48550/ARXIV.2409.06313
001038615 037__ $$aFZJ-2025-01587
001038615 041__ $$aEnglish
001038615 1001_ $$0P:(DE-HGF)0$$aGrimm, Nick$$b0
001038615 245__ $$aCoherent Control of a Long-Lived Nuclear Memory Spin in a Germanium-Vacancy Multi-Qubit Node
001038615 260__ $$barXiv$$c2024
001038615 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1738322328_16005
001038615 3367_ $$2ORCID$$aWORKING_PAPER
001038615 3367_ $$028$$2EndNote$$aElectronic Article
001038615 3367_ $$2DRIVER$$apreprint
001038615 3367_ $$2BibTeX$$aARTICLE
001038615 3367_ $$2DataCite$$aOutput Types/Working Paper
001038615 520__ $$aThe ability to process and store information on surrounding nuclear spins is a major requirement for group-IV color center-based repeater nodes. We demonstrate coherent control of a ${}^{13}$C nuclear spin strongly coupled to a negatively charged germanium-vacancy center in diamond with coherence times beyond 2.5s at mK temperatures, which is the longest reported for group-IV defects. Detailed analysis allows us to model the system's dynamics, extract the coupling parameters, and characterize noise. We estimate an achievable memory time of 18.1s with heating limitations considered, paving the way to successful applications as a quantum repeater node.
001038615 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038615 588__ $$aDataset connected to DataCite
001038615 650_7 $$2Other$$aQuantum Physics (quant-ph)
001038615 650_7 $$2Other$$aFOS: Physical sciences
001038615 7001_ $$0P:(DE-HGF)0$$aSenkalla, Katharina$$b1
001038615 7001_ $$0P:(DE-HGF)0$$aVetter, Philipp J.$$b2
001038615 7001_ $$0P:(DE-Juel1)187412$$aFrey, Jurek$$b3$$eCorresponding author$$ufzj
001038615 7001_ $$0P:(DE-HGF)0$$aGundlapalli, Prithvi$$b4
001038615 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b5$$ufzj
001038615 7001_ $$0P:(DE-HGF)0$$aGenov, Genko$$b6
001038615 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b7$$ufzj
001038615 7001_ $$0P:(DE-HGF)0$$aJelezko, Fedor$$b8
001038615 773__ $$a10.48550/ARXIV.2409.06313
001038615 909CO $$ooai:juser.fz-juelich.de:1038615$$pVDB
001038615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187412$$aForschungszentrum Jülich$$b3$$kFZJ
001038615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b5$$kFZJ
001038615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b7$$kFZJ
001038615 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038615 9141_ $$y2024
001038615 920__ $$lyes
001038615 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001038615 980__ $$apreprint
001038615 980__ $$aVDB
001038615 980__ $$aI:(DE-Juel1)PGI-12-20200716
001038615 980__ $$aUNRESTRICTED