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Quantum cellular automata are alternative quantum-computing paradigms to quantum Turing machines
and quantum circuits. Their working mechanisms are inherently automated, therefore measurement free,
and they act in a translation invariant manner on all cells or qudits of a register, generating a global rule that
updates cell states locally, i.e., based solely on the states of their neighbors. Although desirable features in
many applications, it is generally not clear to which extent these fully automated discrete-time local updates
can generate and sustain long-range order in the (noisy) systems they act upon. In particular, whether and
how quantum cellular automata can perform quantum error correction remain open questions. We close this
conceptual gap by proposing quantum cellular automata with quantum-error-correction capabilities. We
design and investigate two (quasi)one dimensional quantum cellular automata based on known classical
cellular-automata rules with density-classification capabilities, namely the local majority voting and the
two-line voting. We investigate the performances of those quantum cellular automata as quantum-memory
components by simulating the number of update steps required for the logical information they act upon to
be afflicted by a logical bit flip. The proposed designs pave a way to further explore the potential of new

types of quantum cellular automata with built-in quantum-error-correction capabilities.
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Introduction—Cellular automata (CAs) were proposed
as simplified models of self-reproducing systems [1,2], but
rapidly grew into powerful paradigms for the description of
complex systems constructed from identical components
with simple and local interactions [3]. Such emerging
complexity renders CAs suitable candidates for computers
[4], with proven universality [5,6] and reversibility (i.e.,
any irreversible CA can be simulated by a reversible CA)
[7,8]. Error correction with CAs has been studied as a
density-classification problem, i.e., whether a CA can force
all cells of the system to the state that the majority of cells in
any given initial configuration were in. It has been shown
that no CA with two states per cell can perfectly classify the
density when the number of cells is sufficiently large
[9,10]. Nonetheless, a specific combination of CAs gen-
erates a perfect density classifier (DC) in the absence of
noise [11,12], and certain CAs display formidable perfor-
mances as DCs, even in the presence of noise [13-18].

Quantum cellular automata (QCAs), the quantum coun-
terparts of CAs [19], were proposed as alternative universal
quantum-computation models to quantum circuits and
quantum Turing machines [20,21]. QCAs are defined
axiomatically [22,23] and can be cast as local finite-depth
circuits [24,25]. In QCAs, each cell is a quantum subsystem
and the total system evolves unitarily in discrete time steps
in a translation-invariant and quantum-locality-preserving
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(also called causal) manner [26-28]. This means that local
operators are mapped into quasilocal operators at each step
[25,29-31]. By implementing the evolution as an auto-
morphism, QCAs can bypass the requirement of single- or
few-qubit addressability, a prominent feature in proposals
for experimental implementations of QCAs [32]. Even with
QCAs making their way toward experimental realizations
[33,34], it remains unclear if and how the quantum
equivalent of the density-classification problem, quantum
error correction (QEC), can be integrated in this frame-
work, even though (classical) CAs have already been
proposed to automatize syndrome analysis in QEC
[35-43].

In this Letter, we study the density-classification per-
formance under noise of two (quasi)lD CA rules,
Wolfram’s rule 232 [44] (also known as local majority
voting), and Toom’s two-line voting (TLV) [14]. We then
propose QCAs corresponding to these rules and translate
them into quantum circuits (cf. Fig. 1). Those are not only
the first quantum-error-correcting (or quantum-DC) QCAs
proposed, but, when concatenated, also proofs of the
feasibility of QEC in or with QCA architectures. Their
working principle is fundamentally different from usual
QEC, since no measurements are needed [45-54].
Consequently, syndrome collection and classical decoding
are absent, making our QCAs a fully quantum approach to
QEC without quantum-to-classical interfaces. We simulate
our QCAs’ performances in the presence of coherent and
incoherent phenomenological bit-flip noise, as well as
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FIG. 1. Representations of Q232 (left) and QTLV (right). To guarantee reversibility, the QCAs are extended in one additional timelike
dimension [vertical axes in the cylinders (d) and (h)], so that the global rule, shown as a combination of commuting and translation-
invariant local unitaries U; (colored), acts on the present register, covering an entire time-# section of the cylinder, while coupling to the
future register (above) and decoupling from the past register (below). A single U; (one for each j in the case of QTLV) is highlighted in
each cylinder, showing how these local unitaries are decomposed into geometrically distributed parallelizable quantum gates, depicted
in standard form in (e) for Q232 and (i) for QTLV, where P, N, F denote, respectively, past, present or now, and future, while R stands
for reset. The classical neighborhood schemes N, of the corresponding CAs are also highlighted in red [for Q232 in (d)] and blue and red
[for QTLV in (h)], and they are also shown in isolated form in (a) and (c); in these representations, the future cells are shown in green
(Q232) or green and yellow (QTLV) and their states are marked by primes. (f) and (j) show 232 and TLV orbits, respectively, under noise
with bit-flip probability p = 1/12, while (g) and (k) show orbits when p = 1/6. In (j) and (k), each bistring is shown as a single string
with four states: 00 (white), 01 (blue), 10 (purple), and 11 (black). Lastly, (b) represents schematically a potential Q232 realization in

arrays of Rydberg atoms.

incoherent depolarizing circuit noise. Our simulations show
that quantum two-line-voting (QTLV) is an excellent
candidate for a quantum-memory component [55]. We
compare the performances of our (Q)CAs to global voting,
i.e., the classical repetition code [35], and show that under
certain circumstances QTLV outperforms the repetition
code [56,57]. We also briefly discuss some possibilities
for experimental implementations of our QCAs. Lastly, we
discuss how full QEC can be enabled through concatena-
tion of our designs.

(Classical) Cellular automata—A deterministic d-
dimensional CA, (L4, S, f,N,), is a system defined by a
d-dimensional (often infinite) lattice L, of identical cells,
each having an internal set of states S and evolving
according to a local function (rule) f mapping a neighbor-
hood N, of each cell into the update value of that cell [8]. A
configuration over S (global state) isamap {: L, — S, such
that {(i) = s, for the cell state s; on site i. The set of all
configurations is denoted Conf(S, L,;) and the global tran-
sition rule is a function F: Conf(S,L,) — Conf(S, L,).
Space-time configurations generated by ¢ applications of F
on an initial configuration ¢, F)({) = FoFo...oF({), are
called orbits [cf. Figs. 1(f), 1(g), 1(), and 1(k)].

CA rules can be reversible or irreversible: every irre-
versible d-dimensional CA can be simulated by a reversible
(d + 1)-dimensional CA [7] and irreversible 1D CAs can
always be simulated by some reversible 1D CA [8].

Although CAs cannot be perfect DCs [9,10], Ref. [11]
showed that a combination of rules 184 and 232 in
(L, =2,,S=172,) systems generates a perfect DC.
Rule 184, however, does not fulfill self-duality [35],
what hinders the decoupling between different-time

configurations in the corresponding QCA, as discussed

later. We therefore initially focus on rule 232. We assume

periodic boundary conditions throughout, since they best

emulate the infinite-lattice scenario often encountered in

CA and QCA theory and lead to superior performances in

DCs. Other boundary conditions are also possible [35].
Rule 232 can be described as

mod 2 (1)
and imprints on the central cell the majority (modulo 2) of
all states s; € {0, 1} in the neighborhood [see Fig. 1(a)]. As
anoiseless DC, it can correct sole errors (e.g., a single state-
1 cell in a background of state-0 cells or vice versa), and as
long as sole errors are sparsely distributed throughout the
lattice, successful density classification is possible.
However, when errors group in the form of islands, rule
232 will map the latter into themselves, therefore making
density classification impossible. This explains the poor
performance of rule 232 under noise: whenever neighbor-
ing errors are created, density classification fails. In the
presence of noise, 2- and 3-error islands have higher
probabilities to grow than to shrink, while larger islands
have similar probabilities for both cases. Therefore, over
time the islands will contain over half of the cells [58].

A far more powerful quasi-1D (ID) DC, TLV, can be
built from the 232 CA by extending the lattice to a double
string, Ly =Z,,, ® Z,),, and applying local majority
voting, Eq. (1), with two different neighborhoods, each
updating the cells on a different string [14] [cf. Fig. 1(c)].
Denoting the upper and lower string by superscripts
j = %1, TLV can be described as [cf. Fig. 1(c)]

S; = Sip18im1 T S 88
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In the absence of noise, it can be shown that every finite
island of 2/ 4 1 errors on an infinite background of zeros or
ones is eroded after a time < ml for some CA-specific
constant m, making TLV a linear eroder [15]. We show
below that even with noise this property guarantees good
performances.

Quantum cellular automata—A deterministic d-dimen-
sional QCA is a system defined by a d-dimensional lattice
I, of identical cells, each of which has a Hilbert space H;

with a corresponding observable algebra ;li foriel'y. The
QCA Hilbert space is H =®;c H; and its observable
algebra is A =®; . A;, where A =T, (A cT') for (in)
finite I'; [25,59]. The QCA local operators are a; = a; ,;
1, for Ezie.lli and /€A and belong to the QCA local
observable algebra A; = ;l,-. The QCA evolves in time
steps according to an automorphism (global rule) u: A; —
Az, mapping local observables a; of each cell i into

quasilocal observables az. € Ag, 2®;cx, .,zll acting non-
trivially within some region R; C I'; surrounding i [29,60]
(note that an invertible map like u requires Ag, and A; to
cover the same set of cells, A). Besides being translation-
invariant, u is locality-preserving, since it prevents the
observables from spreading through the entire lattice in a
single time step [61]. For finite lattices, 3 U € A such that
u(a;) = U'aq;U. Lastly, there is a one-to-one correspon-
dence (wrapping lemma [22]) between any translation-
invariant QCA (I'y, H;, A;, u, R;) on an infinite lattice and
an equivalent QCA (I}, H;, A;,u,R;) on a finite lattice
with periodic boundary conditions. The two QCAs be-
have similarly provided that I', is sufficiently larger
than R; [62].

To achieve QCAs from the 232 and TLV CAs, we first
make the latter reversible by encoding with F the time-
(t+ 1) configuration in a new (future) register while the
time-f configuration remains stored in the present N
register [7]. By keeping information from the states in
the ¢ and (#+ 1) registers, one can construct reversible
transition matrices that map [s; . 8; /. 8; 0 Si 1] =
[Sig.es St o Siyts Sivrt T F(Sigrs 81, 40 84,,) mod 2] for time-
input cells iy, i1, i, € L, whose states give through rule f
the update (¢ 4 1) value of cell i; [7,58]. In our case, f
generates the transformations (1) and (2) for 232 and TLYV,
respectively, and for TLV i, i;, i,, i3 also contain
information about the location in the upper or lower strings.
Such constructions can be seen as extensions of L, to
L, with the additional dimension representing time
[cf. Figs. 1(d) and 1(h)].

We consider each cell to be a qubit, and the QCAs to be
started in an all-0 space-time configuration; the logical state
is then encoded on the ¢ = 0 (bi)string. It turns out that
self-duality in the CAs to be quantized, defined as

f(_'si—lv 8, _'SH-I) = _'f(si—l7si’si+l)> is a key pro-
perty to allow for decoupling of past and present con-
figurations. Self-duality means that two CA configurations
¢ and ¢ with all cells in complementary states [i.e.,
¢(i)=¢(i) ® 1 mod 2 V i€ L,] will conserve this sym-
metry throughout their orbits, so that flipping all past cells
of the orbit of ¢ makes all past configurations of ¢ and ¢ the
same. For a QCA constructed from a self-dual CA, that
means that the present configuration can be kept as a
coherent logical superposition of |¢)) = E ®; [0;,) and
£y = E ®; |1;,), with some set of errors E on both,
while past configurations are decoupled as a product state
(which is the same for both logical states), |£(")) — [£("))
for ¢ < r. Tt is worth noting that naive quantization of CAs
often violates unitarity, translation invariance, locality and/
or self-duality; the range of CA-derived 1D QCAs that
perform QEC is therefore constrained. Hamiltonian sys-
tems, having continuous-time dynamics and generating
generally nonlocal unitaries, cannot be QCAs [29,63,64].

The automorphism u can be built from a pro-
duct of (quasi)local unitaries U; associated with cells
i€R;CR; such that Uj()U;: Ag — Ag, [22]. In
fact, to evolve the observables a; it suffices to apply a
product of a few U;, since for 2i —j ¢ R those uni-
taries act on the observable as the identity. R; is then
(contained in) the union of all 7?,; such that 2i — jeR,.
For our quantized CAs, R, =N, ((i). In summary,
u(a;) = (IT; Uy ai(I1; Uj)li-jer and, for finite I,
U = [ [ Ux. Such operator products are well defined only
when U, U, = €U, U, for some phase 6, and therefore
commuting unitaries are part of our QCA designs.

Quantum local majority voting (0232)—The quantum
version of rule 232, Q232, can be achieved by translating
Eq. (1) into

Ui.t = (O_(x) )Cm (Gg’xt)_‘rl)[Ci+l.rci—].t+ci+1jci‘t+ci,tci—l,r] (3)

ijt—1

for ¢;, = [1;,— 65?]/2. Note that al(-i) = exp[+in(1;,—
a,(»f?) /2]; therefore (3) can be expressed as an exponential
operator. The ¢ 4 1 operator in Eq. (3) can be decomposed
into a product of three commuting Hermitian unitaries, one
for each term in its exponent, each of which corresponds to
a Toffoli gate. Similarly, the # — 1 operator is a CNOT gate.
We therefore see that the application of Q232 corresponds
locally to three Toffoli gates and one CNOT per cell in the
lattice, as shown in Figs. 1(d) and 1(e). The Toffoli gates are
responsible for encoding into the future cell i the majority
amongst the present-cell states in the neighborhood of i:
|Sizt.6 Sises Sig1.0)0ii1) = ISicre Sies Siz1.0)Si041)  With
si++1 given by the right-hand side of Eq. (1). The
CNOTs make use of self-duality to decouple the past cells
from the present and future ones. In this way, Q232 keeps a
coherent logical superposition of 2n qubits. To recover the
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n-qubit logical state or configuration, only the CNOTs are
applied on the penultimate configuration. Similarly, given
an initial logical state, the first application of Q232 uses
only the Toffoli gates. One can also redefine Q232 so that
the Toffoli gates are applied from # — ¢ + 1 and the CNOTs
afterward from ¢ 4+ 1 — ¢, so that a logical state of n qubits
is kept at each time step.

Quantum two-line voting (QTLV)—By including an
additional string-related superscript j = +1 in Eq. (3),
we derive the local-evolution unitary for QTLYV,

i A0 i [0 G =)y (=) G)
Ugjt) = (gl(,);z)l)ci.r (g(x‘/) )[Ci—.ﬂlci—ZjAerc ¢ +C‘, ¢ ], (4)

i.t-‘,—l i—jtoit it i—2jt
with ¢!/ = [117) — al(-’z,”)]/Z. For each i, 7 and j, Eq. (4) can
also be decomposed into three Toffoli gates and one CNOT
[see Figs. 1(h) and 1(i)]. Since TLV works on two n/2-cell
strings at each time step, QTLV acts on a total of six strings.
One can, however, break each time step into two moves,
one made of Toffoli gates (r — ¢t + 1) and one made of
CNOTs (t + 1 — 1), so that a total of four strings are used.
The global rule and locality-preserving properties of Q232
and QTLYV are discussed in [58].

Simulation results—Having quantized the 232 and TLV
CAs, we now quantitatively assess their QEC capabilities.
We start with the original CAs. Figure 2 shows numerical
evaluations of the average number of time steps (each
corresponding to one application of noise followed by the
CA rule [58]) necessary for the majority of cells of an all-0
initial configuration to be simultaneously found in state 1
(logical flip). We denote this quantity by flip time (FT). For
each lattice size n and single-cell state-flip probability p,
10000 orbits were sampled through Monte Carlo. For
comparison, we also provide corresponding plots for global
voting, applying noise 1 4+ A times before global readout
and correction take place [58]. Since time is measured in
CA steps, the global-voting operational time 1+ A
accounts for a possible delay A. Figure 2(a) shows that
for ten cells global voting with A = 2 already underper-
forms TLV. Recent experimental realizations of the
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FIG. 2. (a) Numerical data for flip-time (FT) dependence on the

inverse bit-flip probability per cell and time step, 1/ p, for several
lattice sizes n (see color code). (b) FT dependence on n for certain
fixed 1/ p (color coded). The 232 and TLV FTs are represented by
circular and triangular data points, respectively. Analytically
derived FTs for global voting [58] with n =10 and A =0
(dashed) or A = 2 (solid) are also shown in (a).

quantum repetition code showed measurement times at
least 1 order of magnitude larger than gate-application
times [57], so that A > 5 for realistic scenarios [58].

One can see from Figs. 2(a) and 2(b) that the FTs for
TLV surpass the 232 values for any n and p. The FT
saturation in Fig. 2(b) results from CAs approaching the
infinite-lattice behavior, as expected from the wrapping
lemma. Locality prevents FTs from increasing unbound-
edly with n, evidencing the absence of phase transitions
[29]. Furthermore, the FTs for TLV show a characteristic
inflexion at p ~ 1/8. Our best fitting was achieved with
(Tp(p.n)) = 2e1+Hlogy(1/p)lf 1 (m)+f2(n) tanh(e2/p=c3)]  with f; =
a; + b;yexp (c;n) as shown in [58]. This function interpo-
lates between the two regimes separated by the inflexion
and approximately reproduces the lower and upper bounds
found in Ref. [15] for a similarly defined quantity.

We simulate the performances of Q232 and QTLV on
PROJECTQ [65,66] via Monte Carlo sampling of 500
random orbits of n = 12 qubits per data point. We use a
single future (bi)string of 12 additional qubits, so that at
each time step, we encode the rule update on the future
register, and then decouple future and present strings by
applying CNOTs controlled by the future cells. We then
reset the present string to an all-0 configuration and relabel
strings according to “future” <> “present.” We call flip time

T the first time ¢ at which > 7 | <a§?> < 0. The sequence
of gates is maximally parallelized: each control and target
qubit is acted upon by one single gate at each circuit step,
leading to circuit depths of 7 for even n (cf. [58]). This
design allows us to run Q232 and QTLV for a 12-qubit
logical state using 24 qubits. The quantum circuits for the
simulation of Q232 and QTLV are shown in [58]. We
simulate our QCAs for different physical bit-flip proba-
bilities applied both coherently and incoherently for the
phenomenological model, and incoherent depolarizing
noise for the circuit-noise model, as shown in Fig. 3.

FIG. 3. Flip times of Q232 (a) and QTLV (b) as functions of
1/p. Phenomenological incoherent and coherent [with
sin?(0/2) = p] bit-flip noise are represented by blue triangles
and stars, respectively; the corresponding noise channels are
represented as 5 and . Circuit incoherent depolarizing noise
corresponds to orange squares, with noise channel &;. For
comparison, CA FTs are included as solid red curves (with
channel sf 1)- FTs for incoherent (K %) and coherent (K’ ﬁ) physical-
qubit noise are included as dashed black and green lines,
respectively, to show the absence of a pseudothreshold (no
crossings with the QCA lines). See Ref. [58] for details.
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We start with randomly generated logical states of the form
cos(d) ®; [0;0) + isin(¢) ®; [1;0) with | < x/4. We
see from Fig. 3 that the performances of the QCAs coincide
with CA ones when incoherent bit-flip noise is phenom-
enologically applied. Surprisingly, for phenomenological
coherent noise, QTLV shows a considerably smaller
performance drop relative to the incoherent model than
the globally decoded quantum repetition code [56]
(cf. Ref. [58]).

Concatenation—Both Q232 and QTLV can be concat-
enated to create QCAs capable of full QEC (i.e., correct
both bit and phase flips). Just as the Shor code concatenates
the repetition code in two complementary bases into a
complete QEC code, we prove in Ref. [58] that a similar
design for QTLV allows for improvement in FT of a logical
state afflicted by bit and phase flips. Concatenation is
therefore one path towards full QEC with our pro-
posed QCAs.

Implementation proposal—Dynamically reconfigurable
2D arrays of neutral atoms allow for the parallelization of
two- and three-qubit high-fidelity entangling gates [67—71].
The parallel gates required for our QCAs are therefore
within experimental reach [58,72]. The reconfigurability of
2D neutral-atom arrays allows for rearrangement of time
strings [68,69]. We expect Rydberg-atom platforms to be
able to implement QCAs with globally applied locally
conditional interactions [32,73] [cf. Fig. 1(b)], with trapped
ions offering similar capabilities [74].

Conclusion—In this Letter, we introduce the first QCAs
for QEC. These QCAs are reversible, translation-invariant,
locality-preserving, self-dual, and independent from mea-
surements and syndromes. They preserve coherence and
information in the logical states they act upon while
keeping errors local. Our simulation results highlight the
robustness of QTLYV, displaying remarkable performance
against coherent and incoherent phenomenological noise.
Our proposal for error-correcting QCAs opens the pos-
sibility to systematically explore and establish QCAs as a
complementary paradigm for robust quantum information
processing. We show that concatenation is one path toward
QCA-based full QEC [58], yet higher-dimensional QCAs
are also expected to have such capabilities. Topological
properties of QCAs [29,75], potentially leveraging con-
cepts from CAs and topological QEC [36—40], could lead
to new approaches of QCA-based measurement-free QEC.
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