001038639 001__ 1038639 001038639 005__ 20250203215421.0 001038639 037__ $$aFZJ-2025-01610 001038639 041__ $$aEnglish 001038639 1001_ $$0P:(DE-Juel1)140202$$aStrube, Alexandre$$b0$$eCorresponding author 001038639 1112_ $$aJSC - as part of the Training Programme of Forschungszentrum Jülich$$cJülich$$d2024-06-25 - 2024-06-26$$gJSC$$wGermany 001038639 245__ $$aBringing Deep Learning Workloads to JSC supercomputers 001038639 260__ $$c2024 001038639 3367_ $$2DRIVER$$alecture 001038639 3367_ $$031$$2EndNote$$aGeneric 001038639 3367_ $$2BibTeX$$aMISC 001038639 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1738563491_21858$$xOther 001038639 3367_ $$2ORCID$$aLECTURE_SPEECH 001038639 3367_ $$2DataCite$$aText 001038639 520__ $$aThis course will take place as an online event. The link to the online platform will be provided to the accepted registrants only.Fancy using High Performance Computing machines for AI? Fancy learning how to run your code one of Europe's fastest computers JUWELS Booster at FZJ?In this workshop, we will guide you through the first steps of using the supercomputer machines for your own AI application. This workshop should be tailored to your needs - and our team will guide you through questions like:How do I get access to the machines? How do I use the pre-installed, optimized software?How can I run my own code?How can I store data so I can access it fast in training?How can parallelize my training and use more than one GPU?In this workshop, we will try to get your code and your workflow running and would like to make the start on a supercomputer as smooth as possible. After this course, you are not only ready to use not only HAICORE but you have made your first step into unlocking compute resources even on the largest scale with a compute time application at the Gauss Supercomputing Center. 001038639 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001038639 536__ $$0G:(DE-Juel-1)E54.303.11$$aHelmholtz AI Consultant Team FB Information (E54.303.11)$$cE54.303.11$$x1 001038639 8564_ $$uhttps://helmholtzai-fzj.github.io/2024-08-course-Bringing-Deep-Learning-Workloads-to-JSC-supercomputers/ 001038639 909CO $$ooai:juser.fz-juelich.de:1038639$$pVDB 001038639 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140202$$aForschungszentrum Jülich$$b0$$kFZJ 001038639 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001038639 9141_ $$y2024 001038639 920__ $$lyes 001038639 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001038639 980__ $$alecture 001038639 980__ $$aVDB 001038639 980__ $$aI:(DE-Juel1)JSC-20090406 001038639 980__ $$aUNRESTRICTED