001038646 001__ 1038646 001038646 005__ 20250203215421.0 001038646 037__ $$aFZJ-2025-01617 001038646 041__ $$aEnglish 001038646 1001_ $$0P:(DE-Juel1)140202$$aStrube, Alexandre$$b0$$ufzj 001038646 1112_ $$aForschungszentrum Jülich$$cJülich$$d2024-11-19 - 2024-11-19$$gINM Retreat$$wGermany 001038646 245__ $$aDeep Learning for Neuroscience 001038646 260__ $$c2024 001038646 3367_ $$2DRIVER$$alecture 001038646 3367_ $$031$$2EndNote$$aGeneric 001038646 3367_ $$2BibTeX$$aMISC 001038646 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1738563473_21854$$xOther 001038646 3367_ $$2ORCID$$aLECTURE_SPEECH 001038646 3367_ $$2DataCite$$aText 001038646 520__ $$aMachine Learning – in particular deep learning – has become an indispensable tool for analyzing large neuroscience datasets. The Helmholtz AI team at Jülich is closely connected to these developments and supports research activities at the intersection of AI, high-performance computing (HPC) and neuroscience. Many of the methods and solutions are not limited to neuroscience and medical applications, but can be transferred to different tasks and scientific domains.This tutorial we will give an overview of state-of-the-art deep learning methods in the context of biomedical image analysis and show concrete examples in INM where deep learning already supports neuroscientists in analyzing their data. The second part of this tutorial will offer a hands-on course on how to bring deep learning pipelines on JSC’s HPC systems. 001038646 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001038646 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1 001038646 536__ $$0G:(DE-Juel-1)E54.303.11$$aHelmholtz AI Consultant Team FB Information (E54.303.11)$$cE54.303.11$$x2 001038646 7001_ $$0P:(DE-Juel1)192312$$aBenassou, Sabrina$$b1$$ufzj 001038646 7001_ $$0P:(DE-Juel1)206762$$aKasravi, Javad$$b2$$ufzj 001038646 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b3$$ufzj 001038646 7001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b4$$ufzj 001038646 8564_ $$uhttps://events.hifis.net/event/1825/page/483-tutorials-november-19-2024 001038646 909CO $$ooai:juser.fz-juelich.de:1038646$$pVDB 001038646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140202$$aForschungszentrum Jülich$$b0$$kFZJ 001038646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192312$$aForschungszentrum Jülich$$b1$$kFZJ 001038646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)206762$$aForschungszentrum Jülich$$b2$$kFZJ 001038646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b3$$kFZJ 001038646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b4$$kFZJ 001038646 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001038646 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1 001038646 9141_ $$y2024 001038646 920__ $$lyes 001038646 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001038646 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1 001038646 980__ $$alecture 001038646 980__ $$aVDB 001038646 980__ $$aI:(DE-Juel1)JSC-20090406 001038646 980__ $$aI:(DE-Juel1)INM-1-20090406 001038646 980__ $$aUNRESTRICTED