001038652 001__ 1038652
001038652 005__ 20250203215421.0
001038652 037__ $$aFZJ-2025-01623
001038652 041__ $$aEnglish
001038652 1001_ $$0P:(DE-Juel1)140202$$aStrube, Alexandre$$b0$$eCorresponding author
001038652 1112_ $$aForschungszentrum Jülich$$cJülich$$d2024-12-04 - 2024-12-05$$gJSC$$wGermany
001038652 245__ $$aBringing Deep Learning Workloads to JSC supercomputers
001038652 260__ $$c2024
001038652 3367_ $$2DRIVER$$alecture
001038652 3367_ $$031$$2EndNote$$aGeneric
001038652 3367_ $$2BibTeX$$aMISC
001038652 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1738563436_21856$$xOther
001038652 3367_ $$2ORCID$$aLECTURE_SPEECH
001038652 3367_ $$2DataCite$$aText
001038652 520__ $$aFancy using High Performance Computing machines for AI? Fancy learning how to run your code one of Europe's fastest computers JUWELS Booster at FZJ? In this workshop, we will guide you through the first steps of using the supercomputer machines for your own AI application. This workshop should be tailored to your needs - and our team will guide you through questions like:<br>- How do I get access to the machines? <br>- How do I use the pre-installed, optimized software?<br>- How can I run my own code?<br>- How can I store data so I can access it fast in training?<br>- How can parallelize my training and use more than one GPU?<br><br>In this workshop, we will try to get your code and your workflow running and would like to make the start on a supercomputer as smooth as possible. After this course, you are not only ready to use not only HAICORE but you have made your first step into unlocking compute resources even on the largest scale with a compute time  application at the Gauss Supercomputing Center.
001038652 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001038652 536__ $$0G:(DE-Juel-1)E54.303.11$$aHelmholtz AI Consultant Team FB Information (E54.303.11)$$cE54.303.11$$x1
001038652 7001_ $$0P:(DE-Juel1)192312$$aBenassou, Sabrina$$b1$$eCorresponding author
001038652 8564_ $$uhttps://helmholtzai-fzj.github.io/2024-12-course-Bringing-Deep-Learning-Workloads-to-JSC-supercomputers/#/title-slide
001038652 909CO $$ooai:juser.fz-juelich.de:1038652$$pVDB
001038652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140202$$aForschungszentrum Jülich$$b0$$kFZJ
001038652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192312$$aForschungszentrum Jülich$$b1$$kFZJ
001038652 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001038652 9141_ $$y2024
001038652 920__ $$lyes
001038652 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001038652 980__ $$alecture
001038652 980__ $$aVDB
001038652 980__ $$aI:(DE-Juel1)JSC-20090406
001038652 980__ $$aUNRESTRICTED