001038810 001__ 1038810
001038810 005__ 20250414120449.0
001038810 020__ $$a979-8-3315-4138-5
001038810 0247_ $$2doi$$a10.1109/QCE60285.2024.10320
001038810 0247_ $$2WOS$$aWOS:001438832300168
001038810 037__ $$aFZJ-2025-01647
001038810 041__ $$aEnglish
001038810 1001_ $$0P:(DE-Juel1)133936$$aSchlösser, Mario$$b0$$eCorresponding author$$ufzj
001038810 1112_ $$a2024 IEEE International Conference on Quantum Computing and Engineering (QCE)$$cMontreal$$d2024-09-15 - 2024-09-20$$wQC
001038810 245__ $$aScalable Room Temperature Control Electronics for Advanced High-Fidelity Qubit Control
001038810 260__ $$bIEEE$$c2024
001038810 29510 $$a2024 IEEE International Conference on Quantum Computing and Engineering (QCE) : [Proceedings] - IEEE, 2024. - ISBN 979-8-3315-4137-8 - doi:10.1109/QCE60285.2024.10320
001038810 300__ $$a2
001038810 3367_ $$2ORCID$$aCONFERENCE_PAPER
001038810 3367_ $$033$$2EndNote$$aConference Paper
001038810 3367_ $$2BibTeX$$aINPROCEEDINGS
001038810 3367_ $$2DRIVER$$aconferenceObject
001038810 3367_ $$2DataCite$$aOutput Types/Conference Paper
001038810 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1739442418_4287
001038810 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001038810 520__ $$aQuantum bit control systems using room temperature electronics provide universities and research institutions a cost-effective entry into quantum computing. Various approaches address the need for straightforward qubit controllers, particularly those based on AMD's next-generation RFSoC FPGA, which integrate adaptive SoCs with internal ADCs and DACs. As superconducting qubit architectures advance to incorporate flux elements for direct Z axis control and the number of qubits grows, the demand for high-quality and numerous control channels increases. This paper explores the requirements for integrating and expanding the QiController electronics from Karlsruhe Institute of Technology. The new system includes up to ten cards capable of driving a total of 240 direct flux lines. Our joint system design leverages the modularity, scalability, and thermal management of the industrial Standard ATCA, ensuring robust performance and ease of maintenance in this multi-FPGA setup. Initial unit tests of the electronics show improvements in noise levels and quality, suggesting that future verification on real qubit devices could establish this approach as a viable solution for scalable room-temperature control hardware.
001038810 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001038810 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x1
001038810 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x2
001038810 588__ $$aDataset connected to CrossRef Conference
001038810 7001_ $$0P:(DE-HGF)0$$aArdila-Perez, Luis E.$$b1
001038810 7001_ $$0P:(DE-HGF)0$$aGartmann, Robert$$b2
001038810 7001_ $$0P:(DE-HGF)0$$aScheller, Lukas$$b3
001038810 7001_ $$0P:(DE-HGF)0$$aFuchs, Marvin$$b4
001038810 7001_ $$0P:(DE-HGF)0$$aSander, Oliver$$b5
001038810 7001_ $$0P:(DE-Juel1)145688$$aHeil, Roger$$b6$$ufzj
001038810 7001_ $$0P:(DE-Juel1)171480$$aRoth, Christian$$b7$$ufzj
001038810 7001_ $$0P:(DE-Juel1)171927$$aBekman, Ilja$$b8$$ufzj
001038810 7001_ $$0P:(DE-Juel1)178064$$aJerger, Markus$$b9$$ufzj
001038810 7001_ $$0P:(DE-Juel1)190190$$aBarends, Rami$$b10$$ufzj
001038810 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b11$$ufzj
001038810 773__ $$a10.1109/QCE60285.2024.10320
001038810 8564_ $$uhttps://ieeexplore.ieee.org/document/10821146
001038810 8564_ $$uhttps://juser.fz-juelich.de/record/1038810/files/Uploaded_Abstract.pdf$$yRestricted
001038810 909CO $$ooai:juser.fz-juelich.de:1038810$$pVDB
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b0$$kFZJ
001038810 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
001038810 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001038810 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
001038810 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
001038810 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145688$$aForschungszentrum Jülich$$b6$$kFZJ
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171480$$aForschungszentrum Jülich$$b7$$kFZJ
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171927$$aForschungszentrum Jülich$$b8$$kFZJ
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178064$$aForschungszentrum Jülich$$b9$$kFZJ
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b10$$kFZJ
001038810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b11$$kFZJ
001038810 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001038810 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
001038810 9141_ $$y2024
001038810 920__ $$lyes
001038810 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001038810 9201_ $$0I:(DE-Juel1)PGI-13-20210701$$kPGI-13$$lQuantum Computing$$x1
001038810 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x2
001038810 980__ $$acontrib
001038810 980__ $$aVDB
001038810 980__ $$acontb
001038810 980__ $$aI:(DE-Juel1)PGI-4-20110106
001038810 980__ $$aI:(DE-Juel1)PGI-13-20210701
001038810 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001038810 980__ $$aUNRESTRICTED