001     1038810
005     20250414120449.0
020 _ _ |a 979-8-3315-4138-5
024 7 _ |a 10.1109/QCE60285.2024.10320
|2 doi
024 7 _ |a WOS:001438832300168
|2 WOS
037 _ _ |a FZJ-2025-01647
041 _ _ |a English
100 1 _ |a Schlösser, Mario
|0 P:(DE-Juel1)133936
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
|c Montreal
|d 2024-09-15 - 2024-09-20
|w QC
245 _ _ |a Scalable Room Temperature Control Electronics for Advanced High-Fidelity Qubit Control
260 _ _ |c 2024
|b IEEE
295 1 0 |a 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) : [Proceedings] - IEEE, 2024. - ISBN 979-8-3315-4137-8 - doi:10.1109/QCE60285.2024.10320
300 _ _ |a 2
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1739442418_4287
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Quantum bit control systems using room temperature electronics provide universities and research institutions a cost-effective entry into quantum computing. Various approaches address the need for straightforward qubit controllers, particularly those based on AMD's next-generation RFSoC FPGA, which integrate adaptive SoCs with internal ADCs and DACs. As superconducting qubit architectures advance to incorporate flux elements for direct Z axis control and the number of qubits grows, the demand for high-quality and numerous control channels increases. This paper explores the requirements for integrating and expanding the QiController electronics from Karlsruhe Institute of Technology. The new system includes up to ten cards capable of driving a total of 240 direct flux lines. Our joint system design leverages the modularity, scalability, and thermal management of the industrial Standard ATCA, ensuring robust performance and ease of maintenance in this multi-FPGA setup. Initial unit tests of the electronics show improvements in noise levels and quality, suggesting that future verification on real qubit devices could establish this approach as a viable solution for scalable room-temperature control hardware.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 1
536 _ _ |a BMBF 13N16149 - QSolid (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Ardila-Perez, Luis E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gartmann, Robert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Scheller, Lukas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fuchs, Marvin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sander, Oliver
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heil, Roger
|0 P:(DE-Juel1)145688
|b 6
|u fzj
700 1 _ |a Roth, Christian
|0 P:(DE-Juel1)171480
|b 7
|u fzj
700 1 _ |a Bekman, Ilja
|0 P:(DE-Juel1)171927
|b 8
|u fzj
700 1 _ |a Jerger, Markus
|0 P:(DE-Juel1)178064
|b 9
|u fzj
700 1 _ |a Barends, Rami
|0 P:(DE-Juel1)190190
|b 10
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 11
|u fzj
773 _ _ |a 10.1109/QCE60285.2024.10320
856 4 _ |u https://ieeexplore.ieee.org/document/10821146
856 4 _ |u https://juser.fz-juelich.de/record/1038810/files/Uploaded_Abstract.pdf
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:1038810
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133936
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145688
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171480
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171927
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)178064
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)190190
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-13-20210701
|k PGI-13
|l Quantum Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)PGI-13-20210701
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21