001038811 001__ 1038811
001038811 005__ 20250310131242.0
001038811 0247_ $$2doi$$a10.1016/j.bbabio.2024.149113
001038811 0247_ $$2ISSN$$a0005-2728
001038811 0247_ $$2ISSN$$a0006-3002
001038811 0247_ $$2ISSN$$a1878-2434
001038811 0247_ $$2ISSN$$a1879-2650
001038811 0247_ $$2WOS$$aWOS:001311206700011
001038811 037__ $$aFZJ-2025-01648
001038811 082__ $$a570
001038811 1001_ $$0P:(DE-Juel1)194880$$aVercellino, Irene$$b0$$eCorresponding author
001038811 245__ $$aSCAF1 drives the compositional diversity of mammalian respirasomes
001038811 260__ $$aAmsterdam$$bElsevier$$c2024
001038811 3367_ $$2DRIVER$$aarticle
001038811 3367_ $$2DataCite$$aOutput Types/Journal article
001038811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738582780_11959
001038811 3367_ $$2BibTeX$$aARTICLE
001038811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001038811 3367_ $$00$$2EndNote$$aJournal Article
001038811 520__ $$aThe ATP synthase in themitochondria of each human being generatesabout 50 kg of ATP daily, maintaining a steady state level of about 10 g tosustain life. The enzyme has a rotarymechanism to transmit energy froma transmembrane proton motive force across the inner membrane of theorganelle (derived by respiration) to the catalytic sites where ATP isformed from ADP and phosphate. The bovine enzyme is made of 29protein subunits of 18 types, including the inhibitor protein IF1 [1,2]. Theyare organised into a rotor and a stator. The rotor consists of a membranebound c8-ring attached to a central stalk (subunits γ, δ and ε) thatprotrudes into the mitochondrialmatrix, and penetrates into the sphericalcatalytic domain (α3β3) of the stator. The stator is completed by aperipheral stalk (PS; subunits OSCP, F6, b and d), bound to the externalsurface of the catalytic domain and extending into themembrane domain(subunits ATP6 and ATP8 plus three small membrane subunits e, f and g,which form a wedge encapsulating lipid molecules). ATP6 is intimatelyassociated with the c8-ring and provides two proton half channelsinvolved in the generation of rotation. The wedges in two ATP synthasesinteract to formthe characteristic dimers that sit on the tips of the cristaeand subunit k links dimers together. The assembly of the human enzymeinvolves the formation of intermediate modules representing (i) thecatalytic domain (α3β3γδε, or F1, plus IF1), (ii) the PS plus the membrane"wedge". [3,4], and (iii) themembrane bound c8-rotor ring [5]. They formthe key intermediate F1-IF1-c8-PS [5] into which subunits ATP6 and ATP8are inserted between the c8-ring and the wedge with subunit j bound toATP6, forming the proton pathway. Two protein assembly factors arerequired to build the c8-ring and three others to assemble the catalyticdomain. IF1 is another key assembly factor that intervenes to preventpartially formed complexes that are capable of ATP hydrolysis (but notsynthesis) from doing so. The assembly pathway reflects the probablemodular path of evolution of the enzyme. Finally, I will comment on thelack of involvement of ATP synthase in the permeability transition.
001038811 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001038811 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001038811 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001038811 7001_ $$0P:(DE-HGF)0$$aSazanov, Leonid A.$$b1
001038811 773__ $$0PERI:(DE-600)2209370-9$$a10.1016/j.bbabio.2024.149113$$gVol. 1865, p. 149113 -$$p149113 -$$tBiochimica et biophysica acta / Bioenergetics$$v1865$$x0005-2728$$y2024
001038811 8564_ $$uhttps://juser.fz-juelich.de/record/1038811/files/SCAF1%20drives%20the%20compositional%20diversity%20-%20Vercellino.pdf$$yRestricted
001038811 909CO $$ooai:juser.fz-juelich.de:1038811$$pVDB
001038811 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194880$$aForschungszentrum Jülich$$b0$$kFZJ
001038811 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001038811 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001038811 9141_ $$y2024
001038811 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
001038811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-BIOENERGETICS : 2022$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001038811 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
001038811 920__ $$lyes
001038811 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001038811 980__ $$ajournal
001038811 980__ $$aVDB
001038811 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001038811 980__ $$aUNRESTRICTED