001     1038813
005     20250610131445.0
024 7 _ |a 10.1162/netn_a_00447
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01650
|2 datacite_doi
024 7 _ |a WOS:001489278300003
|2 WOS
037 _ _ |a FZJ-2025-01650
082 _ _ |a 610
100 1 _ |a Zhang, Shufei
|0 P:(DE-Juel1)180326
|b 0
245 _ _ |a Predicting response speed and age from task-evoked effective connectivity
260 _ _ |a Cambridge, MA
|c 2025
|b The MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740377029_15599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent neuroimaging studies demonstrated that task-evoked functional connectivity (FC) may better predict individual traits than resting-state FC. However, the prediction properties of task-evoked effective connectivity (EC) remain unexplored. We investigated this by predicting individual reaction time (RT) performance in the stimulus-response compatibility task and age, using intrinsic EC (I-EC, calculated at baseline) and task-modulated EC (M-EC, induced by experimental conditions) with dynamic causal modeling (DCM) across various data-processing conditions, including different general linear model (GLM) designs, Bayesian model reduction, and different cross-validation schemes and prediction models. We report evident differences in predicting RT and age between I-EC and M-EC, as well as between event-related and block-based GLM and DCM designs. M-EC outperformed both I-EC and task-evoked FC in RT prediction, while all types of connectivity performed similarly for age. Event-related GLM and DCM designs performed better than block-based designs. Our findings suggest that task-evoked I-EC and M-EC may capture different phenotypic attributes, with performance influenced by data processing and modeling choices, particularly the GLM-DCM design. This evaluation of methods for behavior prediction from brain EC may contribute to a meta-scientific understanding of how data processing and modeling frameworks influence neuroimaging-based predictions, offering insights for improving their robustness and efficacy.Keywords: task fMRI, dynamic causal modeling, analytic flexibility, machine learning, brain-based prediction, stimulus-response compatibility, functional connectivity
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Jung, Kyesam
|0 P:(DE-Juel1)178611
|b 1
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 2
700 1 _ |a Florin, Esther
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Popovych, Oleksandr
|0 P:(DE-Juel1)131880
|b 5
|e Corresponding author
773 _ _ |a 10.1162/netn_a_00447
|g p. 1 - 57
|0 PERI:(DE-600)2900481-0
|p 1-57
|t Network neuroscience
|v .
|y 2025
|x 2472-1751
856 4 _ |u https://juser.fz-juelich.de/record/1038813/files/APC600625699.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1038813/files/Shufei%20Zhang_TaskDCM-MatAB_NetworkNeuroscience_R1_NN_Clean.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1038813/files/netn_a_00447.pdf
909 C O |o oai:juser.fz-juelich.de:1038813
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131880
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NETW NEUROSCI : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-02-09T16:05:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-02-09T16:05:29Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-02-09T16:05:29Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21