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Abstract Explicit expressions for the leading chiral hyperon-
nucleon-nucleon three-body forces have been derived by
Petschauer et al (Phys Rev C93:014001, 2016). An impor-
tant prerequisite for including these three-body forces in few-
and many-body calculations is the accuracy and efficiency
of their partial-wave decomposition. A careful benchmark
of the �NN potential matrix elements, computed using two
robust and efficient partial-wave decomposition methods, is
presented. In addition, results of a first quantitative assess-
ment for the contributions of �NN forces to the separation
energies in A = 3 − 5 hypernuclei are reported.

1 Introduction

Few-nucleon systems have served as a crucial testing ground
for our understanding of nucleon-nucleon (NN) and three-
nucleon (3N) forces [1–10]. In the course of this, due to the
complexity of the computational treatment of few-body sys-
tems and the goal of achieving accurate predictions using
realistic nuclear forces, it has become standard to cross-
compare results achieved with various methods and by inde-
pendent research groups. Indeed, such benchmark studies
have become an integral part of the advancement of micro-
scopic few-nucleon calculations. For instance, in the past,
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benchmark results have been produced for nucleon-deuteron
(N–d) scattering [11,12], for N–d breakup [13], for the triton
binding energy including 2π exchange three-nucleon forces
[14], for the four-nucleon (4N) bound state [15] and for 4N
scattering [16,17].

Regarding strangeness nuclear physics, realistic calcu-
lations of � hypernuclei including the full complexity of
the �N-�N interaction were first presented in [18,19] for
the hypertriton and in [20–22] for 4

�H and 4
�He. Both are

momentum-space calculations based on the Faddeev- and
Faddeev–Yakubovsky (FY) approaches, respectively. Very
recently, the first calculations of the hypertriton separation
energy including chiral �NN three-body forces (3BFs) [23]
have been published [24,25]. Actual benchmark studies for
hypernuclei are however scarce. Over the years, a diverse
range of calculations employing various methods [22,26–
34] have been carried out. However, the elementary NN
and hyperon-nucleon (YN) potentials utilized as input in
those calculations are very different, making a comprehen-
sive comparison of the results not possible. On the other hand,
an actual benchmark study for few-body hypernuclei pre-
sented in Ref. [35] relied on rather simple representations
of the NN and YN interactions. Only lately, first elaborate
benchmark results for 4

�H [33] were reported, by comparing
calculations based on the FY equations and the Jacobi no-
core shell model (Jacobi-NCSM), for state-of-the-art NN and
YN two-body interactions, namely the so-called SMS NN
potentials derived within chiral effective field theory (EFT)
[36] and YN interactions established likewise in chiral EFT
[37,38].

With the present work we want to add a further benchmark
for � hypernuclei. Specifically, we provide a detailed com-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-024-01474-5&domain=pdf
https://orcid.org/0000-0003-1776-9468
https://orcid.org/0000-0002-0923-8053
https://orcid.org/0000-0001-6519-9645
https://orcid.org/0009-0000-3828-2494
https://orcid.org/0000-0003-1254-442X
https://orcid.org/0000-0002-8003-2576
http://orcid.org/0000-0003-2156-748X
mailto:h.le@fz-juelich.de
mailto:j.haidenbauer@fz-juelich.de
mailto:kamada@mns.kyutech.ac.jp
mailto:kamada@rcnp.osaka-u.ac.jp
mailto:kohno@rcnp.osaka-u.ac.jp
mailto:meissner@hiskp.uni-bonn.de
mailto:miyagawa@rcnp.osaka-u.ac.jp
mailto:a.nogga@fz-juelich.de


   21 Page 2 of 10 Eur. Phys. J. A            (2025) 61:21 

parison of the calculations by Kamada, Kohno, and Miya-
gawa (KKM) [24,25] and the Jülich–Bonn Group (JBG)
[39,40] for the hypertriton including chiral 3BFs. The for-
mer calculation is performed within the Faddeev approach
while the latter utilizes the Jacobi-NCSM formalism. The
motivation for our study originates from discrepancies in the
contribution of the 2π exchange �NN force to the hyper-
triton separation energy observed between the KKM results
[24] and the preparatory calculations of JBG. In the course
of clarifying them, see errata to Refs. [24,25,41], it became
clear that it would be rather useful to provide an in-depth com-
parison of the results by the two groups, which does not only
shed light on the accuracy of the two methods but also allows
for an examination of the underlying technical and numer-
ical aspects of such complex calculations. Clearly, such a
detailed comparison is not only indispensable for corrobo-
rating the outcome of the present three-body calculations,
but it provides also a useful guideline for future calculations
employing different few-body methods.

The paper is organized as follow. In the following section,
we briefly describe the two approaches for the partial-wave
decomposition of the �NN (and �NN) potentials employed
by KKM and JBG. A detailed comparison of the �NN poten-
tial matrix elements in different partial-wave states are pre-
sented in Sect. 3. In Sect. 4 we discuss possible contributions
of the chiral �NN interaction to the separation energies in the
A = 3 − 5 hypernuclei and we close with some concluding
remarks.

2 Partial-wave decomposition of the chiral YNN forces

The generic contact, one- and two-meson exchange diagrams
for the process B1B2B3 → B4B5B6, appearing at next-to-
next-to-leading order (N2LO) in the chiral expansion [23],
are shown in panels (a), (b) and (c) in Fig. 1, respectively.
The fully antisymmetrized contact YNN potential, obtained
from the diagram (a) in Fig. 1 and all the permutations of
the incoming B1B2B3 and outgoing B4B5B6 baryon states,
is given by [23,42]

Vct = −
[
N 1

456
123

+ N 2
456
123

σ A.σ B + N 3
456
123

σ A.σC

+ N 4
456
123

σ B .σC + N 5
456
123

iσ A.(σ B × σC )

]
, (1)

where Ni
456
123

are appropriately antisymmetrized combinations

of the 18 LECs defined in Eq. (18) of Ref. [23]. The one-
meson exchange potential corresponding to the master dia-

Fig. 1 Generic YNN → YNN diagrams: a contact term, b one-meson
exchange, c two-meson exchange. The wiggly line symbolizes the four-
baryon contact vertex, to illustrate the baryon bilinears

gram (b) in Fig. 1 reads,

V1me = 1

2 f 2
0

σ A.qli
qli 2 + m2

φ

[
N1σC .qli + N2i(σ B × σC )qli

]
,

(2)

with qli = pl − pi the transferred momentum. Explicit
expressions for the constants N1, N2 are given by Eq. (30)
in Ref. [23]. Based on the general expression in Eq. (2), the
antisymmetrized one-meson exchange B1B2B3 → B4B5B6

potential can be obtained by summing up for each exchange
meson φ the 36 permutations of the initial and final baryons.
Finally, the two-meson exchange diagram (c) yields

V2me = − 1

4 f 4
0

σ A.qli σC .qnk
(q 2

li + m2
φ1

)(q 2
nk + m2

φ2
)

× [N ′
1 + N ′

2qli .qnk + N ′
3i(qli × qnk).σ B].

(3)

The constants N ′
1,2,3 are defined in Eq. (34) in Ref. [23].

Similarly, summing up Eq. (3) for all the 18 permutations1 of
the initial and final baryon states and all possible exchanged
mesons, one obtains the general antisymmetrized two-meson
exchange YNN potential. Note that, in the calculations by
JBG, all the coefficients Ni

456
123

, Ni and N ′
i in Eqs. (1–3) have

been evaluated as functions of the involved LECs usingMath-
ematica.

For the case of �NN → �NN 3BFs that involve only π -
meson exchanges, the expressions for the V�NN potentials
in Eqs. (1–3) can be significantly simplified [23],

V�NN
ct = + C ′

1 (1 − σ 2 · σ 3)(3 + τ 2 · τ 3)

+ C ′
2 σ 1 · (σ 2 + σ 3) (1 − τ 2 · τ 3)

+ C ′
3 (3 + σ 2 · σ 3)(1 − τ 2 · τ 3) , (4)

1 The contribution from those permutations that yield identical results
to the diagram in (c) is already included in Eq. (3), which explains for
the factor of 18 instead of 36.
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V�NN
1π = − gA

2 f 2
0

(
σ 2 · q52

q 2
52 + m2

π

τ 2 · τ 3

[
(D′

1σ 1 + D′
2σ 3) · q52

]

+ σ 3 · q63

q 2
63 + m2

π

τ 2 · τ 3

[
(D′

1σ 1 + D′
2σ 2) · q63

]

+ P(σ )
23 P(τ )

23 P(σ )
13

σ 2 · q62

q 2
62 + m2

π

τ 2 · τ 3

×
[

− D′
1 + D′

2

2
(σ 1 + σ 3) · q62

+ D′
1 − D′

2

2
i (σ 3 × σ 1) · q62

]

+ P(σ )
23 P(τ )

23 P(σ )
12

σ 3 · q53

q 2
53 + m2

π

τ 2 · τ 3

×
[

− D′
1 + D′

2

2
(σ 1 + σ 2) · q53

− D′
1 − D′

2

2
i (σ 1 × σ 2) · q53

])
, (5)

and,

V�NN
2π = g2

A

3 f 4
0

σ 3 · q63 σ 2 · q52

(q 2
63 + m2

π )(q 2
52 + m2

π )
τ 2 · τ 3

×
(

− (3b0 + bD)m2
π + (2b2 + 3b4)q63 · q52

)

− P(σ )
23 P(τ )

23
g2
A

3 f 4
0

σ 3 · q53 σ 2 · q62

(q 2
53 + m2

π )(q 2
62 + m2

π )
τ 2 · τ 3

×
(

− (3b0 + bD)m2
π + (2b2 + 3b4)q53 · q62

)
,

(6)

with appropriate exchange operators in spin and isospin
space, P(σ )

i j = 1
2 (1 + σ i · σ j ), P(τ )

i j = 1
2 (1 + τ i · τ j ).

Here f0 and gA are the Goldstone boson decay constant and
the nucleon axial-vector coupling constant, where we use
f0 = 93 MeV and gA = 1.26. The quantities C ′

i , D
′
i , bi

are low-energy constants (LECs), the latter can in princi-
ple be fixed from the octet baryon masses and three-flavor
meson-baryon scattering [43]. Note that, when the poten-
tials in Eqs. (1–6) are applied to basis wave functions YNN
(�NN) for which the two-nucleon states are antisymmetric,
a scaling factor of 1

2 [24,25,41] is required.
In order to include the above YNN (�NN) interactions

in few- and many-body hypernuclear calculations, efficient
and accurate methods for the partial-wave decomposition of
these potentials are of importance. Therefore, in this study,
we want to benchmark the chiral potential matrix elements
V�NN evaluated using two different partial-wave decompo-
sition methods. In the first approach, referred to as lPWD, the
locality of the chiral �NN potentials in Eqs. (4–6) is explic-
itly exploited so that the eight-fold integration over the angles
of the incoming and outgoing momenta can be reduced to a
two-fold integration, which in turn can significantly speed up

the generation of the 3BF matrix elements. This method has
initially been applied to the local chiral 3NFs up to N3LO
by Hebeler et al. [44], and recently extended by KKM [41]
to compute the partial-wave decomposition matrix elements
of the chiral �NN 3BF at N2LO based on Eqs. (4–6). In
the method of KKM, the �NN interactions are rewritten in
the tensor product form by separating the spin and angular-
momentum parts. A convenient expression in a form similar
to the Wigner–Eckart theorem is derived for the matrix ele-
ment of the angle-dependent term. For more details, one can
refer to [41]. In the second approach, utilized by JBG and
referred to as aPWD, the technique introduced by Skibinski
et al. in Ref. [45] is employed to automatically perform the
partial-wave decomposition of both �NN and �NN poten-
tials using the general expressions in Eqs. (1–3).

In general, the three-body YNN partial-wave states
|p12q3αYNN〉 with the total angular momentum J and total
isospin T in j j-coupling can be constructed as follows

|p12q3αYNN〉 = |p12q3(l12s12) j12

(
l3

1

2

)

I3( j12 I3)JMJ , (t12tY)T MT 〉,
(7)

where p12 and q3 are the relative Jacobi momenta between
two nucleons and between the center-of-mass of two nucle-
ons and the hyperon, respectively, and αYNN denotes a set of
discrete quantum numbers characterizing the state. In the first
step of the aPWD, the 3BF YNN matrix elements are calcu-
lated in the partial-wave state in LS-coupling, |p12q3βYNN〉,

|p12q3βYNN〉 = |p12q3(l12l3)L

(
s12

1

2

)
S

(L , S)JMJ , (t12tY)T MT 〉.
(8)

The LS-coupling representation |p12q3βYNN〉 is related to
the basis |p12q3αYNN〉 in Eq. (7) simply via a 9 j symbol and
Clebsch-Gordan coefficients [46]. In the basis |p12q3βYNN〉,
the 3BF YNN matrix elements can be expressed as

〈p′
12q

′
3β

′
YNN|VYNN|p12q3βYNN〉

=
∫

d p̂′
12

∫
dq̂ ′

3

∫
d p̂12

∫
dq̂3

∑
mL′

C(L ′S′ J ′;mL ′ , MJ ′ − mL ′ , MJ ′)Y∗L ′,mL′
l ′12l

′
3

( p̂′
12q̂

′
3)

∑
mL

C(LSJ ;mL , MJ − mL , MJ )YL ,mL
l12l3

( p̂12q̂3)

×
〈
p′

12q
′
3

(
s′

12
1

2

)
S′MJ − mL ′(t ′12, tY ′)T ′MT |VYNN|

p12q3

(
s12

1

2

)
SMJ − mL(t12, tY )T MT

〉
,

(9)
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where

YLmL
l12l3

( p̂12q̂3) =
l12∑

ml12 =−l12

C(l12, l3, L;ml12 ,mL − ml12 ,mL)

× Yl12,ml12
( p̂12)Yl3,mL−ml12

(q̂3).

(10)

the matrix elements in the spin- and isospin-spaces in Eq. (9),〈
p′

12q
′
3 (s′

12
1
2 )S′MS′(t ′12, tY ′)T ′MT |VYNN| p12q3 (s12

1
2 )SMS

(t12, tY )T MT 〉, depend on the momenta, spin- and isospin-
quantum numbers of the incoming and outgoing states. They
can be computed in analytic form as a function of the
momenta p12, q3 and p′

12, q
′
3 for all combinations of spin

and isospin- quantum numbers utilizing a software for sym-
bolic calculations such asMaple (in our case) orMathematica
[45]. This symbolic software also allows an automatic gen-
eration of a FORTRAN code for these matrix elements, so
that the multifold integration over the angular part in Eq. (9)
can efficiently be calculated numerically using a FORTRAN
program. Furthermore, given that the 3BFs VYNN is rotation-
ally invariant, the matrix elements in Eq. (9) vanish unless
J = J ′ and MJ = MJ ′ , and in addition, they do not depend
on the magnetic quantum number MJ , hence

〈p′
12q

′
3β

′
YNN|VYNN|p12q3βYNN〉

=
∫

d p̂′
12

∫
dq̂ ′

3

∫
d p̂12

∫
dq̂3

1

2J + 1

J∑
mJ=−J∑

mL′
C(L ′S′ J ;mL ′ , MJ − mL ′ , MJ )Y∗L ′,mL′

l ′12l
′
3

( p̂′
12q̂

′
3)

∑
mL

C(LSJ ;mL , MJ − mL , MJ )YL ,mL
l12l3

( p̂12q̂3)

×
〈
p′

12q
′
3

(
s′

12
1

2

)
S′MJ − mL ′(t ′12, tY ′)T ′MT |VYNN|

p12q3

(
s12

1

2

)
SMJ − mL(t12, tY )T MT

〉
.

(11)

Since the integrand in Eq. (11) is a scalar, one can freely chose
the directions of the momenta, say p′

12 and the azimuthal
angle of q3 is q ′

q3 such that p12 = (0, 0, p12) and φq3 = 0.
As a consequence, the eight-fold integration in Eq. (11) can
be effectively reduced to a five-fold integration over the polar
angle of q3 and the solid angles p̂12 and q̂3 [45],

∫
d p̂′

12

∫
dq̂ ′

3

∫
d p̂12

∫
dq̂3 →

∫
dθq3

∫
d p̂12

∫
dq̂3 ,

which, in turn, can lead to a significant speed-up of the gen-
eration of the 3BF matrix-elements. Once the 3BF matrix

elements in the LS-representation are known, the recoupling
to the j j-basis, 〈p′

12q
′
3α

′
YNN|VYNN|p12q3αYNN〉, can easily

be done [46]. In addition, since we assume that the 3BF YNN
is charge independent, it is sufficient to compute the matrix
elements in Eq. (11) for a specific value of mT , say mT = 0.

3 Benchmarking �NN matrix elements

We are now in a position to benchmark the 3BF matrix
elements computed using the two different partial-wave
decomposition approaches described in the previous sec-
tion. Since the lPWD method has only been implemented
for the �NN potential, we will focus on comparing the
�NN potential matrix elements and turn off the � com-
ponents in the aPWD approach also for the binding energy
calculations discussed later. In Table 1, we list the quan-
tum numbers of the α�NN states with positive parity and
the total angular momentum and isospin of (Jπ , T ) =
(1/2+, 0) and (3/2+, 0) which have been selected for
benchmarking. The 2π -exchange �NN matrix elements,
〈p′

12q
′
3α

′
�NN|V2π |p12q3α�NN〉, computed at fixed Jacobi

momenta
p′

12 = p12 = q3 = 0.205507 fm–1 and q ′
3 = 0.306967 fm–1

are presented in Table 2. The sub-leading meson-baryon
LECs [23], appearing inV�NN

2π , have been set to 3b0+bD = 0
and 2b2 + 3b4 = −3.0 × 10−3 MeV–1. One can clearly
observe an almost perfect agreement between the aPWD and
lPWD 2π -exchange �NN matrix elements.

Table 3 lists the 1π -exchange and contact �NN matrix
elements in the partial-wave state with (Jπ , T ) = (1/2+, 0).
The LECs in Eqs. (4, 5) are set to D′

1 = 0, D′
2 = 2C

9 f 2
0 �

=
0.6268 fm3 with C = 3

4 gA = 0.9525,
� = 300 MeV and C ′

2 = 0, C ′
1 = C ′

3 = 1
72 f 4

0 �
=

0.1852 fm5 based on the so-called decuplet saturation
scheme, see next section for details. We do not show
here the results in the (Jπ , T ) = (3/2+, 0) state but
stress that similar agreement of better than 0.5% is also
observed for the 1π -exchange and contact potential matrix
elements in this partial-wave state. Figure 2 shows the
aPWD and lPWD 1π - and 2π -exchange �NN matrix ele-
ments, 〈p′

12, q
′
3, α

′
�NN|V�NN|p12, q3, α�NN〉 in the partial-

wave state (1/2+, 0), as a function of the momentum p12

for p′
12 = q ′

3 = q3 = 0.20550664 fm −1. Note that the
matrix elements in Fig. 2 have been regularized employing a
non-local regularization function of the form f�(p12, q3) =
exp(−(p2

12 + 3
4q

2
3 )2/�4) with a cutoff of � = 550 MeV.

Such a non-local regularization function has the advantage
that it does not depend on the angles and therefore can be
applied to the potential independently of the partial-wave
decomposition. The so-called semi-local momentum-space
(SMS) regularization developed by the Bochum group has

123
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Table 1 Quantum numbers of the first three �NN partial-wave states for the two selected Jπ and T

(Jπ , T ) α�NN l12 s12 J12 t12 l� 2I�

(1/2+, 0) 1 0 1 1 0 0 1

2 2 1 1 0 0 1

3 1 0 1 0 1 1

(3/2+, 0) 1 0 1 1 0 0 1

2 2 1 1 0 0 1

3 1 0 1 0 1 1

Table 2 2π -exchange �NN matrix elements 〈p′
12q

′
3α

′
�NN|V2π |

p12q3α�NN〉 in fm5, computed with the automatic partial-wave decom-
position (aPWD) and the approach that exploits the locality of the chi-

ral YNN interaction (lPWD). The incoming and outgoing momenta are
fixed to p′

12 = p12 = q3 = 0.205507 fm–1 and q ′
3 = 0.306967 fm–1.

The sub-leading meson-baryon LECs [23] are set to 3b0 + bD = 0 and
2b2 + 3b4 = −3.0 × 10−3 MeV–1

α′
�NN α�NN J = 1/2+, T = 0 J = 3/2+, T = 0

aPWD lPWD Diff [%] aPWD lPWD diff [%]

1 1 0.211808E−03 0.211795E−03 0.01 0.211818E−03 0.211795E−03 0.01

2 1 0.488366E−03 0.488674E−03 0.06 0.488367E−03 0.488674E−03 0.06

3 1 0.200297E−03 0.200317E−03 0.01 −0.100145E−03 −0.100158E−03 0.01

1 2 0.488614E−03 0.488674E−03 0.01 0.488511E−03 0.488674E−03 0.03

2 2 −0.781242E−04 −0.781013E−04 0.03 −0.781352E−04 −0.781013E−04 0.04

3 2 0.504514E−04 0.504487E−04 0.01 −0.252244E−04 −0.252244E−04 0.00

1 3 0.112725E−03 0.112723E−03 0.002 −0.563600E−04 −0.563617E−04 0.03

2 3 0.341903E−04 0.341810E−04 0.03 −0.170948E−04 −0.170905E−04 0.02

3 3 0.779062E−04 0.779012E−04 0.01 0.779025E−04 0.779012E−04 0.02

Table 3 Contact and 1π -exchange �NN matrix elements in fm5, com-
puted with the automatic partial-wave decomposition (aPWD) and
the approach that exploits the locality of the chiral YNN interaction
(lPWD). The incoming and outgoing momenta are fixed to p′

12 = p12 =

q3 = 0.205507 fm–1 and q ′
3 = 0.306967 fm–1. LECs are set to D′

1 = 0,
D′

2 = 2C
9 f 2

0 �
= 0.6268 fm 3 with C = 3/4 gA and � = 300 MeV, and

C ′
2 = 0, C ′

1 = C ′
3 = 1

72 f 4
0 �

= 0.1852 fm 5

J=1/2+, T = 0 V1π Vct
α′

�NN α�NN aPWD lPWD Diff [%] aPWD lPWD Diff [%]

1 1 0.166474E−02 0.167123E−02 0.4 0.379766E−02 0.380185E−02 0.1

2 1 0.156132E−02 0.156852E−02 0.4 0.0 0.0

3 1 −0.27E−12 0.0 0.0 0.0

1 2 0.156197E−02 0.156852E−02 0.4 0.0 0.0

2 2 0.479602E−02 0.481549E−02 0.4 −0.25E−08 −0.91E−10

3 2 0.48E−13 0.0 −0.18E−13 0.0

1 3 0.32E−13 0.0 0.0 0.0

2 3 0.86E−13 0.0 0.0 0.0

3 3 0.503546E−04 0.505587E−04 0.4 −0.0 0.60E−19

however shown some advantages over the non-local reg-
ularization for the case of NN and 3NF forces [47]. The
application of the SMS regularization to chiral YNN forces
will be studied in [48]. Finally, Fig. 3 displays the 2π -, 1π -
exchange and contact�NN matrix elements, 〈p′

12q
′
3 α′

�NN =
1|V�NN|p12q3 α�NN = 1〉, in several partial-wave states
(Jπ , T ) = (1/2+, 0), (1/2+, 1), (3/2+, 0) and (3/2+, 1) as

a function of the hyperspherical coordinate ξ2 = p2
12 + 3

4q
2
3

and at a hyperangle tan θ = 2√
3
p12/q3 = π

4 . Also here the

non-local regularization function with a cutoff of � = 550
MeV has been applied to all potentials. The V�NN matrix
elements in the (3/2+, 1) state have been scaled by a factor
of 10 in order to make them visible on the plot. In general,
the matrix elements in the higher partial-wave states that are
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Fig. 2 2π (right panels) and 1π (left panels) �NN matrix ele-
ments 〈p′

12 ≈ 0.206 fm−1, q ′
3 ≈ 0.206 fm−1, α′

�NN|V�NN|p12, q3 ≈
0.206 fm−1, α�NN〉, computed using aPWD (solid lines) and lPWD
(dashed line), as a function of p12 in the (Jπ , T ) = (1/2+, 0) partial-
wave state and for (α′

�NN, α�NN): a, b (1,1), c, d (2,2). All matrix have
been regularized with a cutoff of � = 550 MeV

Fig. 3 Matrix elements of 2π -, 1π - and contact- �NN potentials
〈p′

12q
′
3α

′
�NN|V�NN|p12q3α�NN〉 as a function of the hypermomen-

tum ξ2 = p2
12 + 3

4q
2
3 at hyperangles tan θ = 2√

3
p12/q3 = π

4

and tan θ ′ = π
4 in different partial-wave states with (Jπ , T ) =

(1/2+, 0), (1/2+, 1), (3/2+, 0), (3/2+, 1). All matrix elements are in
fm5 and have been regularized with a cutoff of � = 550 MeV. The
matrix elements in the partial wave state (Jπ , T ) = (3/2+, 1) have
been multiplied by a factor of 10 in order to make them visible

not shown in Fig. 3 are of at least two order of magnitude
smaller than the ones in the (1/2+, 0) state.

4 A = 3− 5 hypernuclei with chiral �NN three-body
forces

In this section, we will investigate the possible contributions
of the chiral �NN potentials to the separation energies of
A = 3 − 5 hypernuclei. As one can see from Eqs. (4–6), the
�NN potential is characterized by five LECs (C ′

1 −C ′
3, D′

1,
D′

2) which are difficult to determine due to the scarcity of
the experimental data. However, using the decuplet satura-
tion approximation the LECs can be qualitatively estimated.
Specifically, they can be expressed in terms of contact inter-
actions for BB → BB∗, with pertinent LECs denoted by Hi

in Ref. [49]. Then we are left with only one unknown LEC
(H ′ = H1 +3H2) for the case of V�NN (and two LECs when
both �NN and �NN are considered) [49],

C ′
1 = C ′

3 = H ′2
72�

, C ′
2 = 0,

D′
1 = 0, D′

2 = 2CH ′

9�
,

3b0 + bD = 0, 2b2 + 3b4 = −C2

�
. (12)

Here � is the decuplet-octet baryon mass difference and
C = 3/4 gA ≈ 0.95 is the B∗Bφ coupling constant [49].
As evidenced by Eq. (12), decuplet saturation fixes also the
sub-leading meson-baryon LECs, i.e. the bi . Note, however,
that within decuplet saturation some LECs are zero and thus
the most general structure of the YNN forces is not explored.

In principle, the LEC H ′ is to be determined via a fit
to the binding energies of the s-shell hypernuclei, which is
beyond the scope of this study. This issue will be thoroughly
dealt with in a future investigation [48]. For our present pur-
pose of exploring the chiral �NN 3BF, it is sufficient to
assume a realistic scale for H ′. Therefore, we will adopt
H ′ = 1/ f 2

0 , as suggested in [49] based on dimensional scal-
ing arguments, for all the calculations reported in this section.
The separation energies for A = 3−5 hypernuclei, computed
using the two-body YN potential NLO19 with a cutoff of
� = 550 MeV in combination with the 2π -, 1π -exchange,
or contact �NN potentials, are listed in Table 4. The semi-
local momentum-space (SMS) NN potential at N4LO+, like-
wise regularized with a cutoff of � = 550 MeV, has been
employed for describing the nuclear interaction. For A = 4 ,5
hypernuclei also 3N forces contribute, for which we take the
leading (N2LO) SMS regularized chiral 3NFs as specified
for example in Table 1 of Ref. [40]. For the calculations
with the NCSM, all interactions have been evolved with the
similarity renormalization group (SRG) at a flow parameter
of λ = 1.88 fm–1 and the corresponding induced 3BFs (in
3N, �NN and �NN) are included. As has been discussed,
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Table 4 Separation energies for s-shell � hypernuclei without �NN
3BF and with 2π -exchange, 1π -exchange, or contact 3BF, respectively.
All calculations are based on the SMS N4LO+(550) and NLO19(550)
potentials for NN and YN, respectively, and on chiral �NN 3BFs with

non-local regulator of � = 550 MeV. For the NCSM calculations all
potentials have been SRG-evolved at a flow parameter of λ = 1.88 fm–1.
Also, an uncertainty estimate for the results is provided

w/o �NN w. 2π -ex �NN w. 1π -ex �NN w. ct �NN Exp. [52]

NCSM 3
�H 0.080 ± 0.006 0.153 ± 0.004 0.121 ± 0.005 0.076 ± 0.007 0.164 ± 0.043

FY 0.087 0.152 0.129 0.080

NCSM 4
�He(0+) 1.432 ± 0.010 1.810 ± 0.006 1.619 ± 0.007 1.400 ± 0.010 2.347 ± 0.036
4
�He(1+) 1.164 ± 0.014 1.744 ± 0.007 1.427 ± 0.009 1.117 ± 0.016 0.942 ± 0.036
5
�He 3.174 ± 0.020 4.618 ± 0.011 3.757 ± 0.034 2.961 ± 0.031 3.102 ± 0.030

e.g., in [50,51], the SRG-induced YNN forces can be much
larger than what is expected for chiral YNN forces. Its size
can be estimated by the SRG flow parameter dependence
of the energy when the induced YNN forces are omitted.
For A = 3, 4 and 5, this has been found to be of the order of
300 keV, 1 MeV and 3.5 MeV, respectively [33]. However, we
have carefully checked that, for the above flow parameter and
using interactions up to the three-body level, the uncertainty
due to omitted induced many-body forces is negligible (see
also [40]). At the same time, NCSM calculations converge
in reasonably sized model spaces [4,39,40]. As discussed
in the previous section, the chiral �NN potential matrix ele-
ments at partial-wave states with the total angular momentum
J ≥ 5/2 are very small, their contributions to the binding
energies are therefore expected to be insignificant. Indeed,
we have observed that the �NN 3BFs with J = 5/2 con-
tribute only a few keV to the binding energies in the A = 4, 5
systems. Therefore, for the calculations for A ≥ 4 systems,
the �NN matrix elements V�NN with J ≥ 7/2 will be omit-
ted, whereas all the possible isospin states T = 0, 1, 2 and
parities are taken into account.

As already mentioned, for the 3
�H system, we provide

results from both the NCSM [39,40] and the Faddeev
approach [24]. The energies for the A = 4, 5 systems have
been computed only within the NCSM. Clearly, the differ-
ence between the two A = 3 results are smaller than the
estimated uncertainty for the NCSM approach. The contri-
bution of the contact potential V�NN

ct to B�(3
�H) is negligibly

small and repulsive, whereas the V�NN
2π and V�NN

1π contribu-
tions are sizable and attractive, amounting to about 70 and
40 keV, respectively. Similarly, the effect of V�NN

ct to the
binding energy B�(4

�He, 0+) is repulsive but with 30 keV
rather insignificant. It becomes, however, moderately repul-
sive in the 4

�He(1+) and 5
�He states, contributing about 50

and 200 keV, respectively. Interestingly, both the 1+ state
in the A = 4 system and 5

�He are largely overbound with
the 2π - and 1π -exchange �NN potentials, with respect to
the present experimental information [52], while the ground
state in A = 4 remains underbound.

Since the sign of the LECs C ′
1 and C ′

3 parameterizing the
contact interaction is completely fixed when decuplet satu-
ration is assumed, cf. Eq. (12), it can be expected that the
contribution from the contact terms remains repulsive for
any combination of the LECs H1 and H2. Note however
that choices that lead to a negative H ′ are possible, which
allow for a partial cancellation of V�NN

2π and V�NN
1π . Any-

way, a careful analysis of the H ′ (or H1 and H2) depen-
dence of the separation energies of the s-shell hypernuclei is
beyond the scope of this work. Nonetheless, let us mention
that exploratory calculations have shown that the inclusion of
the chiral �NN-�NN and �NN three-body potentials alone
does not lead to a qualitative change of the results for the light
hypernuclei considered above. Rather, one has to really relax
the constraints from decuplet saturation in order to reproduce
the separation energies of A = 3 − 5 hypernuclei, see [34]
and [48].

5 Conclusions

In this work, we examined two different approaches, lPWD
and aPWD, to efficiently perform the partial-wave decompo-
sition of three-body forces, for the chiral �NN (YNN) inter-
actions. The �NN matrix elements of the two methods were
compared with each other in detail. In general, an agreement
of better than 0.1% is observed for the 2π -exchange poten-
tial, whereas the difference in all the 1π -exchange and con-
tact �NN potentials matrix elements is smaller than 0.5%.
Such a benchmark provides a solid confirmation of the cor-
rectness of our implementations and is of importance for any
future calculations that include the chiral YNN 3BFs.

As first application, we explored the possible impact of
the leading chiral �NN potential on the separation energies
of light hypernuclei. The sub-leading meson-baryon LECs
appearing in the 2π -exchange 3BF and the LECs in the
1π -exchange contribution and the six-baryon contact term
were estimated via decuplet saturation and assuming val-
ues for the LECs based on dimensional scaling arguments.
It turned out that the weakly repulsive �NN contact inter-
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action leads to a small contribution to the binding energies
in all A = 3 − 5 hypernuclei, whereas the two other con-
tributions, V�NN

2π and V�NN
1π , are moderately attractive for

our choice of the only remaining LEC H ′. The size of the
individual contributions are significant even for 3

�H. This is
somewhat surprising since estimates for chiral N2LO contri-
butions so far indicated negligible �NN force contributions
[38,40]. But the case studied here also leads to overbinding
for the Jπ = 1+ state of 4

�He and 5
�He while 4

�He(0+) is still
clearly underbound. The interesting question whether one
can determine an optimal combination of the LECs within
the decuplet approximation so that all light hypernuclei are
well described, should be and will be addressed in a future
study. In such a study, it should also be addressed whether
the �NN force contribution to 3

�H remains sizable.
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