001     1038879
005     20250220092005.0
037 _ _ |a FZJ-2025-01694
041 _ _ |a English
100 1 _ |a Masood, Anum
|0 P:(DE-Juel1)200375
|b 0
|e First author
111 2 _ |a 2024 ISMRM & ISMRT Annual Meeting & Exhibition
|c Singapore
|d 2024-05-04 - 2024-05-09
|w Singapore
245 _ _ |a Enhancing Ultra-Low-Dose PET/MRI Using Deep Learning Method for Improved Interpretation
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1739281731_3184
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Motivation: We developed a deep learning model to enhance the image quality of ultra-low dose brain PET.Goal(s): Significantly reducing the injected dose not only minimizes radiation risk in subjects but also provides options for scanning protocols, and more follow-up studies.Approach: We proposed a 3D-Residual Attention U-Net model initially trained on whole-body [18F]FDG PET/MR images. We used transfer learning approach to fine-tune our proposed model on [18F]CPFPX PET/MRI inhouse dataset.Results: We achieved improved metrics compared to U-Net model with average PSNR of 28.02 (U-Net: 21.23), SSIM of 0.81 (U-Net: 0.53), CNR of 0.72 (U-Net: 0.61) and NMSE of 0.33 (U-Net: 0.67).Impact: Our model has potential to generate high-quality PET images from low-dose PET/MR, potentially contribute to implementation of kinetic modelling using PET/MR imaging. Our model is capable of enhancing both whole-body and brain datasets, making it valuable asset for diverse applications.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 1
|u fzj
700 1 _ |a Elmenhorst, E. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Foerges, Anna Linea
|0 P:(DE-Juel1)179271
|b 3
|u fzj
700 1 _ |a Lange, Denise
|0 P:(DE-Juel1)165827
|b 4
700 1 _ |a Hennecke, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Baur, D. M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 7
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 8
|u fzj
700 1 _ |a Aeschbach, D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 10
|u fzj
700 1 _ |a Landolt, H. P.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 12
|u fzj
700 1 _ |a Beer, Simone
|0 P:(DE-Juel1)133864
|b 13
|e Last author
|u fzj
909 C O |o oai:juser.fz-juelich.de:1038879
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177611
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)133864
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21